
INFERNAL User’s Guide

Sequence analysis using profiles of RNA secondary structure consensus

http://infernal.janelia.org/
Version 0.71; December 2006

Sean Eddy
HHMI Janelia Farm
19700 Helix Drive
Ashburn VA 20147

http://selab.janelia.org/

http://infernal.janelia.org/
http://selab.janelia.org

Copyright (C) 2001-2006 HHMI Janelia Farm.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
and this permission notice are retained on all copies.

The free version of the Infernal software package is a copyrighted work that may be freely distributed and
modified under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version. Alternative license terms
may be obtained (for instance, for commercialization purposes) from the Office of Technology
Management at Washington University. See the files COPYING and LICENSE that came with your copy
of the Infernal software for details.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

For a copy of the full text of the GNU General Public License, see www.gnu.org/licenses.

1

http://www.gnu.org/licenses/

Contents

1 Introduction 4

2 Installation 5
Quick installation instructions . 5
More detailed installation notes . 5

setting installation targets . 5
setting compiler and compiler flags . 6
turning on Large File Support (LFS) . 6
installing rigorous filters . 7

Example configuration . 7

3 Getting started 8
Format of a simple input RNA alignment file . 8
Building a model withcmbuild . 9
Searching a sequence database withcmsearch . 9
Creating new multiple alignments withcmalign . 10
Using optional annotation to completely specify model architecture tocmbuild 11
Using local alignment incmsearch andcmalign . 12
An important limitation tocmsearch : the -W option . 13

Getting more information . 14

4 Profile SCFG construction: thecmbuild program 15
Technical description of a covariance model . 15

Definition of a stochastic context free grammar . 15
SCFG productions allowed in CMs . 15
From consensus structural alignment to guide tree . 16
From guide tree to covariance model . 18
Parameterization . 19
Comparison to profile HMMs . 19

The cmbuild program, step by step . 19
Alignment input file . 21
Parsing secondary structure annotation . 21
Sequence weighting . 22
Architecture construction . 23
Parameterization . 23
Naming the model . 23
Saving the model . 24

5 File and output formats 25
RNA secondary structures: WUSS notation . 25

Full (output) WUSS notation . 25
Shorthand (input) WUSS notation . 26

Multiple alignments: Stockholm format . 29
A minimal Stockholm file . 29

2

Syntax of Stockholm markup . 29
Semantics of Stockholm markup . 30
Recognized #=GF annotations . 30
Recognized #=GS annotations . 31
Recognized #=GC annotations . 31
Recognized #=GR annotations . 31

Sequence files: FASTA format . 31
CM file format . 32
Dirichlet prior files . 32

6 Manual pages 35
cmalign - use a CM to make a structure RNA multiple alignment 35

Synopsis . 35
Description . 35
Options . 35
Expert Options . 35

cmbuild - construct a CM from an RNA multiple sequence alignment 37
Synopsis . 37
Description . 37
Options . 37
Expert Options . 37

cmscore - align and score one or more sequences to a CM . 40
Synopsis . 40
Description . 40
Options . 40
Expert Options . 40

cmsearch - search a sequence database for RNAs homologous to a CM 42
Synopsis . 42
Description . 42
Options . 42
Expert Options . 42

3

1 Introduction

INFERNAL is a software package that allows you to make consensus RNA secondary structure profiles, and
use them to search nucleic acid sequence databases for homologous RNAs, or to create new structure-based
multiple sequence alignments.

To make a profile, you need to have a multiple sequence alignment of an RNA sequence family, and the
alignment must be annotated with a consensus RNA secondary structure. The programcmbuild takes an
annotated multiple alignment as input, and outputs a profile.

You can then use that profile to search a sequence database for homologs, using the programcmsearch .
You can also use the profile to align a set of unaligned sequences to the profile, producing a structural

alignment, using the programcmalign . This allows you to build hand-curated representative alignments of
RNA sequence families, then use a profile to automatically align any number of sequences to that profile.
This seed alignment/full alignment strategy combines the strength of stable, carefully human-curated align-
ments with the power of automated updating of complete alignments as sequence databases grow. This is
the strategy used to maintain the RFAM database of RNA multiple alignments and profiles.

INFERNAL is comparable toHMMER (hmmer.janelia.org). TheHMMER software package builds profile
hidden Markov models (profile HMMs) of multiple sequence alignments. Profile HMMs capture only pri-
mary sequence consensus features.INFERNAL models are profile stochastic context-free grammars (profile
SCFGs). Profile SCFGs include both sequence and RNA secondary structure consensus information.

Currently INFERNAL is really just an algorithm testbed. Output is rudimentary, and some desired fea-
tures are missing. Most importantly,INFERNAL is very slow and CPU-intensive. You will probably need a
large number of CPUs in order to use it for serious work. Planned algorithmic improvements should make
it more practical in the future. We are making it available as a fully documented package now, only be-
causeINFERNAL has been pressed prematurely into service as the basis for constructing and maintaining the
RFAM database of structurally annotated RNA multiple alignments (Griffiths-Jones et al., 2003). When we
assign a 1.0 release number, that’s when we’ll thinkINFERNAL is ready for prime time. Until then, please
bear with us.

4

http://hmmer.janelia.org

2 Installation

Quick installation instructions

Download the source tarball (infernal.tar.gz) from ftp://selab.janelia.org/pub/software/infernal/ or
http://infernal.janelia.org

Unpack the software:
> tar xvf infernal.tar.gz

Go into the newly created top-level directory (named eitherinfernal , or infernal-xx wherexx is
a release number:

> cd infernal

Configure for your system, and build the programs:
> ./configure

> make

Run the automated testsuite. This is optional. All these tests should pass:
> make check

The programs are now in thesrc/ subdirectory. The user’s guide (this document) is in the
documentation/userguide subdirectory. The man pages are in thedocumentation/manpages sub-
directory. You can manually move or copy all of these to appropriate locations if you want. You will want
the programs to be in your $PATH.

Optionally, you can install the man pages and programs in system-wide directories. If you are happy
with the default (programs in/usr/local/bin/ and man pages in/usr/local/man/man1), do:

> make install

That’s all. More complete instructions follow, including how to change the default installation directories
for make install .

More detailed installation notes

INFERNAL is distributed as ANSI C source code. It is designed to be built and used on UNIX platforms. It is
developed on Intel GNU/Linux systems, and intermittently tested on a variety of vendor-donated UNIX plat-
forms including Sun/Solaris, HP/UX, Digital Tru64, Silicon Graphics IRIX, IBM/AIX, and Intel/FreeBSD.
It is not currently tested on either Microsoft Windows or Apple OS/X. It should be possible to build it on
any platform with an ANSI C compiler. The software itself is vanilla POSIX-compliant ANSI C. You may
need to work around the configuration scripts and Makefiles to get it built on a non-UNIX platform.

The GNU configure script that comes with INFERNAL has a number of options. You can see them all by
doing:

> ./configure --help

All customizations can and should be done at the./configure command line, unless you’re a guru
delving into the details of the source code.

setting installation targets

The most important options are those that let you set the installation directories formake install to be
appropriate to your system. What you need to know is that INFERNAL installs only two types of files: pro-
grams and man pages. It installs the programs in--bindir (which defaults to/usr/local/bin), and the
man pages in theman1 subdirectory of--mandir (default/usr/local/man). Thus, say you wantmake

5

ftp://selab.janelia.org/pub/software/infernal/
http://infernal.janelia.org

install to install programs in/usr/bioprogs/bin/ and man pages in/usr/share/man/man1 ; you
would configure with:

> ./configure --mandir=/usr/share/man --bindir=/usr/bioprogs/bin

That’s really all you need to know, since INFERNAL installs so few files. But just so you know; GNU con-
figure is very flexible, and has shortcuts that accomodates several standard conventions for where programs
get installed. One common strategy is to install all files under one directory, like the default/usr/local .
To change this prefix to something else, say/usr/mylocal/ (so that programs go in/usr/mylocal/bin

and man pages in/usr/mylocal/man/man1 , you can use the--prefix option:
> ./configure --prefix=/usr/mylocal

Another common strategy (especially in multiplatform environments) is to put programs in an architecture-
specific directory like/usr/share/Linux/bin while keeping man pages in a shared, architecture-independent
directory like/usr/share/man/man1 . GNU configure uses--exec-prefix to set the path to architec-
ture dependent files; normally it defaults to being the same as--prefix . You could change this, for
example, by:

> ./configure --prefix=/usr/share --exec-prefix=/usr/share/Linux/

In summary, a complete list of the./configure installation options that affect INFERNAL:
Option Meaning Default
--prefix=PREFIX architecture independent files/usr/local/

--exec-prefix=EPREFIX architecture dependent files PREFIX
--bindir=DIR programs EPREFIX/bin/
--mandir=DIR man pages PREFIX/man/

setting compiler and compiler flags

By default,configure searches first for the GNU C compilergcc , and if that is not found, for a compiler
calledcc . This can be overridden by specifying your compiler with theCCenvironment variable.

By default, the compiler’s optimization flags are set to-g -O2 for gcc , or -g for other compilers. This
can be overridden by specifying optimization flags with theCFLAGSenvironment variable.

For example, to use an Intel C compiler in/usr/intel/ia32/bin/icc with optimization flags-O3

-ipo , you would do:
> env CC=/usr/intel/ia32/bin/icc CFLAGS="-O3 -ipo" ./configure

which is the one-line shorthand for:
> setenv CC /usr/intel/ia32/bin/icc

> setenv CFLAGS "-O3 -ipo"

> ./configure

If you are using a non-GNU compiler, you will almost certainly want to setCFLAGSto some sensi-
ble optimization flags for your platform and compiler. The-g default generated unoptimized code. At a
minimum, turn on your compiler’s default optimizations withCFLAGS=-O.

turning on Large File Support (LFS)

INFERNAL has one optional feature: support for Large File System (LFS) extensions that allow programs to
access files larger than 2 GB. LFS is rapidly becoming standard, but not yet standard enough to be default.
If you do anything with Genbank files or large genome files (like the 3 GB human genome), you will need
LFS support. LFS is enabled with the--enable-lfs option:

6

> ./configure --enable-lfs

installing rigorous filters

INFERNAL includes programs by Zasha Weinberg that implement rigorous filtering. This software requires
a C++ compiler, and also relies on an external library, CFSQP, that is not included in this distribution, but
can be obtained by request from http://www.aemdesign.com/. To build the executables, include these two
options to configure:

> ./configure --with-rigfilters --with-cfsqp=/path/to/cfsqp

Example configuration

The Intel GNU/Linux version installed at Janelia Farm is configured as follows:
> env CFLAGS="-O3" ./configure --enable-lfs --prefix=/usr/local/infernal-xx

7

http://www.aemdesign.com/

3 Getting started

Here’s a quick walk-through of the package. Here, we will a) build a model of an RNA multiple alignment
usingcmbuild ; b) use that model to search for new homologs usingcmsearch ; and c) use that model to
align new sequences, and create a new multiple alignment, usingcmalign .

We’ll use the following files, all of which are in theintro/ subdirectory of the distribution:

tutorial.sto A multiple alignment of five tRNA sequences. This file is a simple example ofStockholm
format that INFERNAL uses for structurally-annotated alignments.

tutorial.db A tiny sequence “database”; a 300 nt sequence that contains a tRNA. The file is in FASTA
format, whichINFERNAL uses for unaligned sequence data.

tutorial.fa The same sequences as intutorial.sto , plus one more tRNA with an internal deletion
(to demonstrate local alignment), in unaligned FASTA format.

Format of a simple input RNA alignment file

Look at the alignment filetutorial.sto in the intro/ subdirectory of theINFERNAL distribution. It is
shown below, with a secondary structure of the first sequence shown to the right for reference (yeast Phe
tRNA, labeled as “tRNA1” in the file):

STOCKHOLM 1.0

tRNA1 GCGGAUUUAGCUCAGUUGGG.AGAGCGCCAGACUGAAGAUCUGGAGGUCC
tRNA2 UCCGAUAUAGUGUAAC.GGCUAUCACAUCACGCUUUCACCGUGGAGA.CC
tRNA3 UCCGUGAUAGUUUAAU.GGUCAGAAUGGGCGCUUGUCGCGUGCCAGA.UC
tRNA4 GCUCGUAUGGCGCAGU.GGU.AGCGCAGCAGAUUGCAAAUCUGUUGGUCC
tRNA5 GGGCACAUGGCGCAGUUGGU.AGCGCGCUUCCCUUGCAAGGAAGAGGUCA
#=GC SS_cons <<<<<<<..<<<<.........>>>>.<<<<<.......>>>>>.....<

tRNA1 UGUGUUCGAUCCACAGAAUUCGCA
tRNA2 GGGGUUCGACUCCCCGUAUCGGAG
tRNA3 GGGGUUCAAUUCCCCGUCGCGGAG
tRNA4 UUAGUUCGAUCCUGAGUGCGAGCU
tRNA5 UCGGUUCGAUUCCGGUUGCGUCCA
#=GC SS_cons <<<<.......>>>>>>>>>>>>.
//

A U

A U
C G
C G

G C

G C

A U

C G
G C

U A
U A

G U

A

A

A

A

A

A

A

A

A

U

UU

U

U
U

U

U
C

C

C

C

G

G
G

GG
G

G

GGG

U

A

U

A

G

C

G

C

C

G

G

C

G

C

C

G

A

U 10

20

30 40

50

60

70

5' 3'

Yeast tRNA-Phe
(tRNA1)

This is a simple example of a multiple RNA sequence alignment with secondary structure annotation, in
Stockholm format. Stockholm format, the native alignment format used byHMMER andINFERNAL and the
PFAM and RFAM databases, is documented in detail later in the guide.

For now, what you need to know about the key features of the input file is:

• The alignment is in an interleaved format, like other common alignment file formats such asCLUSTALW.
Lines consist of a name, followed by an aligned sequence; long alignments are split into blocks sepa-
rated by blank lines.

• Each sequence must have a unique name. (This is important!)

• For residues, any one-letter IUPAC nucleotide code is accepted, including ambiguous nucleotides.
Case is ignored; residues may be either upper or lower case.

• Gaps are indicated by the characters .,, -, or ˜ . (Blank space is not allowed.)

8

• A special line starting with#=GC SS_cons indicates the secondary structure consensus. Gap char-
acters annotate unpaired (single-stranded) columns. Base pairs are indicated by any of the following
pairs: <>, () , [] , or [] . No pseudoknots are allowed; the open/close-brackets notation is only
unambiguous for strictly nested base-pairing interactions.

• The file begins with the special tag line# STOCKHOLM 1.0, and ends with// .

Building a model with cmbuild

To build a model from this alignment, do:
> cmbuild my.cm tutorial.sto

Almost instantly,cmbuild reads in the alignment, constructs a model, and saves that model to the new
file my.cm. It is a convention to use the.cm suffix for model files; CM stands for “covariance model”,
another name for the profile SCFG architecture used byINFERNAL (Eddy and Durbin, 1994).

The outputcmbuild contains information about the size of your input alignment (in aligned columns
and # of sequences), and about the size of the resulting model. You don’t need to understand this to use the
model, so for now we’ll skip describing the output.

The result, the model file inmy.cm is a text file. You can look at it (e.g.> more my.cm) if you like,
but it isn’t really designed to be human-interpretable. You can treat.cm files as compiled models of your
RNA alignment.

Searching a sequence database withcmsearch

You can use your model to search for new homologues of your RNA family. The filetutorial.db con-
tains an example sequence “database”: one 300 nt sequence, with yeast tRNA-Phe embedded at position
101. . . 173. To search it, do:

> cmsearch my.cm tutorial.db

cmsearch now searches both strands of each sequence in the target database, and returns alignments
for high scoring hits. In this case, it returns one hit:

sequence: example
hit 0 : 101 173 22.29 bits

(((((((,,<<<<___.____>>>>,<<<<<_______>>>>>,,,,,<<<<<_______
1 gccgauaUagcgcAgU.GGuAgcgcgccacccUgucaagguggAGgUCcggggUUCGAUu 59

GC:+AU:UAGC:CAGU GG AG:GCGCCA::CUG ++A::UGGAGGUCC:G:GUUCGAU+
101 GCGGAUUUAGCUCAGUuGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUC 160

>>>>>))))))):
60 ccccguaucggcg 72

C:C:G:AU+:GC+
161 CACAGAAUUCGCA 173

Hits are numbered starting from 0. This one shows hit 0, from position 101 to 173 on the sequence
named “example”, with a score of 22.29 bits. There are no E-value statistics yet inINFERNAL, so this score
is all you have to go by to determine significance of a hit. Larger scores are better. As a rough guide, scores
greater than the log (base two) of the target database size are significant. Here, given a 600 nt target (300 nt
× 2 strands), scores over 9-10 bits are significant - so a score of 22.29 is a good hit.

The alignment is shown in a BLAST-like format, augmented by secondary structure annotation.
The top line shows the predicted secondary structure of the target sequence. The format is a little fancier

and more informative than the simple least-common-denominator format we used in the input alignment

9

file. It’s designed to make it easier to “see” the secondary structure by eye. The format is described in
detail later; for now, here’s all you need to know. Base pairs in simple stem loops are annotated with<>
characters. Base pairs enclosing multifurcations (multiple stem loops) are annotated with() , such as the
tRNA acceptor stem in this example. In more complicated structures,[] and{} annotations also show up,
to reflect deeper nestings of multifurcations. For single stranded residues,characters mark hairpin loops;
characters mark interior loops and bulges; , characters mark single-stranded residues in multifurcation loops;
and : characters mark single stranded residues external to any secondary structure. Insertions relative to this
consensus are annotated by a. character.

The second line shows that consensus of the query model. The highest scoring residue sequence is
shown. Upper case residues are highly conserved. Lower case residues are weakly conserved or uncon-
served.

The third line shows where the alignment score is coming from. For a consensus base pair, if the
observed pair is the highest-scoring possible pair according to the consensus, both residues are shown in
upper case; if a pair has a score of≥ 0, both residues are annotated by : characters (indicating an acceptable
compensatory base pair); else, there is a space, indicating that a negative contribution of this pair to the
alignment score. For a single-stranded consensus residue, if the observed residue is the highest scoring
possibility, the residue is shown in upper case; if the observed residue has a score of≥ 0, a + character is
shown; else there is a space, indicating a negative contribution to the alignment score.

Finally, the fourth line is the target sequence.

Creating new multiple alignments with cmalign

You can also use a model to structurally align any number of new RNA sequences to your consensus struc-
ture. This is how the RFAM database is constructed: we start with “seed” alignment, build a CM of it, and
use that CM to align all known members of the sequence family and create a “full” alignment. This allows
us to maintain representative seed alignments that are stable and small enough to be human-curated, while
still being able to automatically incorporate and align all homologues detected in the rapidly growing public
sequence databases.

An example of some unaligned tRNA sequences are in the filetutorial.fa . (In fact, these are the
same sequences that are intutorial.sto , reformatted into unaligned FASTA format; plus a new se-
quence, tRNA6, which was created by deleting some residues out of the middle of tRNA1. tRNA6 will be
used a little later to demonstrate local alignment.)

To align these sequences to the model we made inmy.cm, do:
> cmalign my.cm tutorial.fa

10

This results in an alignment that looks like:

STOCKHOLM 1.0
#=GF AU Infernal 0.54

tRNA1 GCGGAUUUAGCUCAGUuGGG.AGAGCGCCAGACUGAAGAUCUGGAGGUCC
tRNA2 UCCGAUAUAGUGUAAC.GGCuAUCACAUCACGCUUUCACCGUGGAGA-CC
tRNA3 UCCGUGAUAGUUUAAU.GGUcAGAAUGGGCGCUUGUCGCGUGCCAGA-UC
tRNA4 GCUCGUAUGGCGCAGU.GGU.AGCGCAGCAGAUUGCAAAUCUGUUGGUCC
tRNA5 GGGCACAUGGCGCAGUuGGU.AGCGCGCUUCCCUUGCAAGGAAGAGGUCA
tRNA6 GCGGAUUUAGCUCAGUuGGG.AGAGCGCC-------AGA---CGAGGUCC
#=GC SS_cons (((((((,,<<<<___.___._>>>>,<<<<<_______>>>>>,,,,,<
#=GC RF gccgauaUagcgcAgU.GGu.AgcgcgccacccUgucaagguggAGgUCc

tRNA1 UGUGUUCGAUCCACAGAAUUCGCA
tRNA2 GGGGUUCGACUCCCCGUAUCGGAG
tRNA3 GGGGUUCAAUUCCCCGUCGCGGAG
tRNA4 UUAGUUCGAUCCUGAGUGCGAGCU
tRNA5 UCGGUUCGAUUCCGGUUGCGUCCA
tRNA6 UGUGUUCGAUCCACAGAAUUCGCA
#=GC SS_cons <<<<_______>>>>>))))))):
#=GC RF ggggUUCGAUuccccguaucggcg
//

In the aligned sequences, a. character indicates an inserted column relative to consensus; the. character
is an alignment pad. A- character is a deletion relative to consensus.

The symbols in the consensus secondary structure annotation line have the same meaning that they did
in a pairwise alignment fromcmsearch .

The #=GC RFline is reference annotation. Non-gap characters in this line mark consensus columns;
cmalign uses the residues of the consensus sequence here, with upper case denoting strongly conserved
residues, and lower case denoting weakly conserved residues. Gap characters (specifically, the. pads) mark
insertions relative to consensus. As described below,cmbuild is capable of reading these RF lines, so you
can specify which columns are consensus and which are inserts (otherwise,cmbuild makes an automated
guess, based on the frequency of gaps in each column).

If you want to save the alignment to a file, you can use the-o option:
> cmalign -o my.sto my.cm tutorial.fa

We’ll use thismy.sto alignment file in the next section.

Using optional annotation to completely specify model architecture tocmbuild

cmbuild needs to know two things to convert your alignment into a profile SCFG.
First, it needs to know the consensus secondary structure. It reads this from the#=GC SS_cons line, as

described above. This annotation is mandatory.
It also needs to know which columns are consensus, and which columns are insertions relative to con-

sensus. By default, it will determine this by a simple rule: if a column contains more than a certain fraction
of gap characters (default>50%), the column is called an insertion. This may not be what you want; for
instance, maybe you are trying to iteratively build models based on larger and larger numbers of sequences
(based on an RFAM seed, say), but you don’t want the curated consensus model architecture to change just
because you added some new sequences to the alignment.

You can optionally override that default and specify the complete architecture of the model, using both
a #=GC SS_cons structure annotation line and a#=GC RFreference column annotation line. To do this,
you use the--rf flag tocmbuild .

11

For example, to build a model calledsecond.cm from my.sto that has the same architecture asmy.cm,
you would do:

> cmbuild --rf second.cm my.sto

Sincecmalign leaves an RF line on the alignments it generates, the--rf option allows you to prop-
agate your consensus structure into new, larger alignments. The RF line is also handy when you want the
model’s coordinate system to be the same as a canonical, well-studied single sequence: you can simply use
that sequence as the RF line, or manually create any consensus coordinate system you like. (This is the
origin of RF as the “reference line”, e.g. giving a reference coordinate system.) The only thing that matters
in the RF line is nongap versus gap characters: the line can be as simple as x’s marking consensus columns,
. ’s for insert columns.

Using local alignment incmsearch and cmalign

The examples above required the entire model to match a subsequence of the target: so-calledglocal align-
ment (global with respect to the query model, local with respect to the target sequence). But in many cases,
a homologous RNA structure has undergone enough changes that parts of its structure cannot be aligned to
the consensus.Local alignment, in which only part of the query model needs to match the target to detect a
hit, can be a more sensitive searching strategy.

In primary sequence alignment, local alignment means an alignment of two subsequences of the query
and target. In aligning a query RNA structure to a target sequence, local alignment means starting and
ending at points inside the query structure – which, when you map that idea onto linear sequence, means an
alignment that may consist of more than one discontinuous subsequence. We’ll demonstrate this by example
for now, and describe local alignment is described in detail later. For the purposes of the tutorial, all you
really need to know is how to activate it. It is not the default behavior for eithercmsearch or cmalign .

Local alignment is activated forcmsearch by using the--local option. For example:
> cmsearch --local my.cm tutorial.fa

Look at the last alignment in this output, the alignment for tRNA6:

sequence: tRNA6
hit 0 : 1 63 11.52 bits

(((((((,,<<<<___.____>>>>,<˜˜˜˜˜˜>,,,,,<<<<<_______>>>>>))))
1 gccgauaUagcgcAgU.GGuAgcgcgc*[15]*gAGgUCcggggUUCGAUuccccguauc 68

GC:+AU:UAGC:CAGU GG AG:GCGC GAGGUCC:G:GUUCGAU+C:C:G:AU+
1 GCGGAUUUAGCUCAGUuGGGAGAGCGC*[5]*GAGGUCCUGUGUUCGAUCCACAGAAUU 59

))):
69 ggcg 72

:GC+
60 CGCA 63

The*[15]* and*[5]* in the query and target, respectively, indicate that 15 consensus residues and
5 target residues were left unaligned; the target does not appear to have the consensus structure in this
region. (No kidding, since I made the tRNA6 example sequence by deleting part of the anticodon stem.)
The structure annotation line is marked with˜˜˜˜˜˜ to indicate the gap in the alignment, and to distinguish
local alignment induced gaps from normal insertions (which are marked with. characters).

You can activate local alignment incmalign with the-l option:
> cmalign -l my.cm tutorial.fa

12

This results in the following alignment:1

STOCKHOLM 1.0
#=GF AU Infernal 0.54

tRNA1 GCGGAUUUAGCUCAGUuGGG.AGAGCGCCAGACUGAAGA.....UCUGGA
tRNA2 UCCGAUAUAGUGUAAC.GGCuAUCACAUCACGCUUUCAC.....CGUGGA
tRNA3 UCCGUGAUAGUUUAAU.GGUcAGAAUGGGCGCUUGUCGC.....GUGCCA
tRNA4 GCUCGUAUGGCGCAGU.GGU.AGCGCAGCAGAUUGCAAA.....UCUGUU
tRNA5 GGGCACAUGGCGCAGUuGGU.AGCGCGCUUCCCUUGCAA.....GGAAGA
tRNA6 GCGGAUUUAGCUCAGUuGGG.AGAGCGC-----------cagac----GA
#=GC SS_cons (((((((,,<<<<___.___._>>>>,<<<<<_______˜˜˜˜˜>>>>>,
#=GC RF gccgauaUagcgcAgU.GGu.AgcgcgccacccUgucaa˜˜˜˜˜gguggA

tRNA1 GGUCCUGUGUUCGAUCCACAGAAUUCGCA
tRNA2 GA-CCGGGGUUCGACUCCCCGUAUCGGAG
tRNA3 GA-UCGGGGUUCAAUUCCCCGUCGCGGAG
tRNA4 GGUCCUUAGUUCGAUCCUGAGUGCGAGCU
tRNA5 GGUCAUCGGUUCGAUUCCGGUUGCGUCCA
tRNA6 GGUCCUGUGUUCGAUCCACAGAAUUCGCA
#=GC SS_cons ,,,,<<<<<_______>>>>>))))))):
#=GC RF GgUCcggggUUCGAUuccccguaucggcg
//

Note how the local alignment is represented for tRNA6. The deleted consensus columns are marked by
- characters. The unaligned “insertion” is shown in its own columns; those columns are again marked with
˜ characters in the consensus secondary structure annotation and the reference (RF) annotation lines.

An important limitation to cmsearch : the -W option

cmsearch implements a “scanning CYK” dynamic programming algorithm (Durbin et al., 1998) that looks
for high-scoring alignments of the structural model to any subsequence of the target sequence. It works even
if the target sequence is very large (e.g. a whole chromosome) – though it is slow, like all SCFG algorithms.
An important feature of the scanning CYK algorithm is that it needs to know themaximum lengthof an
aligned target subsequence, e.g. the size of its scanning window on the target sequence.

By default, the scanning window is calculated bycmbuild and stored in the model. The calculation is
fairly rigorous, based on the expected probability density over possible lengths (Nawrocki and Eddy, 2007).
The result will almost certainly be fine for your purposes. However, you can override it and set the scanning
window width yourself to<n> with the-W <n> option.

Even if the target RNA is larger than the scanning window, there is some chance of finding part of it –
particularly in combination with local alignment (--local), which explicitly allows partial matches to the
query model. Thus, it may be possible to speed up a search with a large model by deliberately scanning a
genome with--local and a small window size, looking for possible hits, then realigning candidate regions
with a more appropriate value of-W. This strategy has not been systematically tested.

1The discontinuity of structural local alignment presents a quandary for representing multiple alignments. On the one hand,
you might not want to even show the unaligned target residues in the gap (e.g., cagac) – they aren’t aligned to the model. On the
other hand, you sort of expect that if you pull an RNA sequence out of a multiple alignment, it represents a true subsequence of
a larger sequence, not a concatenation of disjoint subsequences – you’d at least like some indication of where some residues have
gone missing. One option would be to leave a *[5]* in the gap, as in the pairwise representation; but one of the nice properties of
Stockholm format is that it’s easy to interconvert it to other alignment formats just by stripping off everything by the name/sequence
part of the alignment, and sticking non-sequence characters like *[5]* in the alignment would prevent that.

13

Getting more information

For a quick refresher on the command line usage of any program and its commonly used options, just type
the name of the program with no other arguments: e.g.

> cmbuild

and you’ll get a brief help:

FATAL: Incorrect number of arguments.
Usage: cmbuild [-options] <cmfile output> <alignment file>
The alignment file is expected to be in Stockholm format.

Available options are:
-h : help; print brief help on version and usage
-n <s> : name this CM <s>
-A : append; append this CM to <cmfile>
-F : force; allow overwriting of <cmfile>

For version information and a complete listing of options, use the-h option with any program, e.g.
> cmsearch -h

and you’ll see something like:

Infernal 0.54 (Jan 2003)
Copyright (C) 2002-2003 Washington University, Saint Louis
Freely distributed under the GNU General Public License (GPL)
- -
Usage: cmsearch [-options] <cmfile> <sequence file>
The sequence file is expected to be in FASTA format.

Most commonly used options are:
-h : help; print brief help on version and usage
-W <n> : set scanning window size to <n> (default: 200)

Expert, in development, or infrequently used options are:
--informat <s>: specify that input alignment is in format <s>, not FASTA
--toponly : only search the top strand
--local : do local alignment
--dumptrees : dump verbose parse tree information for each hit

More detailed information on usage and command line options is available in UNIX manual pages. If
they have been installed for your system, you can see this information with, e.g.:

> man cmalign

Copies of the man pages are also provided at the end of this guide.

14

4 Profile SCFG construction: thecmbuild program

INFERNAL builds a model of consensus RNA secondary structure using a formalism called acovariance
model(CM), which is a type ofprofile stochastic context-free grammar(profile SCFG) (Eddy and Durbin,
1994; Durbin et al., 1998; Eddy, 2002).

What follows is a technical description of what CM is, how it corresponds to a known RNA secondary
structure, and how it is built and parameterized.2 You certainly don’t have to understand the technical details
of CMs to understandcmbuild or INFERNAL, but it will probably help to at least skim this part. After that
is a description of what thecmbuild program does to build a CM from an input RNA multiple alignment,
and how to control the behavior of the program.

Technical description of a covariance model

Definition of a stochastic context free grammar

A stochastic context free grammar (SCFG) consists of the following:

• M different nonterminals (here calledstates). I will use capital letters to refer to specific nonterminals;
V andY will be used to refer generically to unspecified nonterminals.

• K different terminal symbols (e.g. the observable alphabet, a,c,g,u for RNA). I will use small letters
a, b to refer generically to terminal symbols.

• a number ofproduction rulesof the form:V → γ, whereγ can be any string of nonterminal and/or
terminal symbols, including (as a special case) the empty stringε.

• Each production rule is associated with a probability, such that the sum of the production probabilities
for any given nonterminalV is equal to 1.

SCFG productions allowed in CMs

A CM is a specific, repetitive SCFG architecture consisting of groups of model states that are associated
with base pairs and single-stranded positions in an RNA secondary structure consensus. A CM has seven
types of states and production rules:

State type Description Production Emission Transition
P (pair emitting) P → aY b ev(a, b) tv(Y)
L (left emitting) L → aY ev(a) tv(Y)
R (right emitting) R → Y a ev(a) tv(Y)
B (bifurcation) B → SS 1 1
D (delete) D → Y 1 tv(Y)
S (start) S → Y 1 tv(Y)
E (end) E → ε 1 1

Each overall production probability is the independent product of an emission probabilityev and a tran-
sition probabilitytv, both of which are position-dependent parameters that depend on the statev (analogous

2Much of this text is taken from (Eddy, 2002).

15

example structure:

A
U
A

:
A
A
G

:
G
C
G

<
A
A
U

<
C
C
C

<
U
U
U

_
U
U
U

_
C
C
C

_
G
G
-

_
G
G
G

>
A
A
C

-
U
U
A

>
C
G
C

>
U
-

G

:
G
C
G

<
G
A
G

<
C
C
C

-
G
C
A

<
A
A
C

_
C
A
C

_
A
A
A

_
C
G
U

>
C
U
U

>
C
G
C

>
human
mouse

orc

[structure]

g
.
.
.

c
.
.
.

.
a
.
.

.
a
.
.

input multiple alignment:

1 5 10 15 20 25 28

C

C

G

C

G

C

G A

A
C

G C
A U

A
C G

U
U C

G

UA
A2

5

10

15

2527

21

Figure 1: An example RNA sequence family.Left: a toy multiple alignment of three sequences, with 28 total
columns, 24 of which will be modeled as consensus positions. The [structure] line annotates the consensus secondary
structure in WUSS notation. Right: the secondary structure of the “human” sequence.

to hidden Markov models). For example, a particular pair (P) statev produces two correlated lettersa and
b (e.g. one of 16 possible base pairs) with probabilityev(a, b) and transits to one of several possible new
statesY of various types with probabilitytv(Y). A bifurcation (B) state splits into two new start (S) states
with probability 1. The E state is a special caseε production that terminates a derivation.

A CM consists of many states of these seven basic types, each with its own emission and transition
probability distributions, and its own set of states that it can transition to. Consensus base pairs will be
modeled by P states, consensus single stranded residues by L and R states, insertions relative to the consen-
sus by more L and R states, deletions relative to consensus by D states, and the branching topology of the
RNA secondary structure by B, S, and E states. The procedure for starting from an input multiple align-
ment and determining how many states, what types of states, and how they are interconnected by transition
probabilities is described next.

From consensus structural alignment to guide tree

Figure 1 shows an example input file: a multiple sequence alignment of homologous RNAs, with a line in
WUSS notation that describes the consensus RNA secondary structure. The first step of building a CM is
to produce a binaryguide treeof nodesrepresenting the consensus secondary structure. The guide tree is a
parse tree for the consensus structure, with nodes as nonterminals and alignment columns as terminals.

The guide tree has eight types of nodes:

Node Description Main state type
MATP (pair) P
MATL (single strand, left) L
MATR (single strand, right) R
BIF (bifurcation) B
ROOT (root) S
BEGL (begin, left) S
BEGR (begin, right) S
END (end) E

These consensus node types correspond closely with the CM’s final state types. Each node will eventu-
ally contain one or more states. The guide tree deals with the consensus structure. For individual sequences,
we will need to deal with insertions and deletions with respect to this consensus. The guide tree is the skele-
ton on which we will organize the CM. For example, a MATP node will contain a P-type state to model a

16

R OOT 1

MAT L 22

MAT L 33

B IF 4

4 14

5 13

12

6 11

7

8

9

10

B E G L 5

MAT P 6

MAT P 7

MAT R 8

MAT P 9

MAT L 10

MAT L 11

MAT L 12

MAT L 13

E ND 14

B E G R 15

MAT L 1615

MAT P 1716 27

MAT P 1817 26

MAT L 1918

MAT P 2019 25

MAT L 2121

MAT L 2222

MAT L 2323

E ND 24

3
2

4 14

5 13
12

6 11

7 10
8 9

15

16 27

17 26
18

19 25

21 23
22

consensus structure: guide tree:

Figure 2:The structural alignment is converted to a guide tree.Left: the consensus secondary structure is derived
from the annotated alignment in Figure 1. Numbers in the circles indicate alignment column coordinates: e.g. column
4 base pairs with column 14, and so on. Right: the CM guide tree corresponding to this consensus structure. The
nodes of the tree are numbered 1..24 in preorder traversal (see text). MATP, MATL, and MATR nodes are associated
with the columns they generate: e.g., node 6 is a MATP (pair) node that is associated with the base-paired columns 4
and 14.

consensus base pair; but it will also contain several other states to model infrequent insertions and deletions
at or adjacent to this pair.

The input alignment is first used to construct a consensus secondary structure (Figure 2) that defines
which aligned columns will be ignored as non-consensus (and later modeled as insertions relative to the
consensus), and which consensus alignment columns are base-paired to each other. For the purposes of this
description, I assume that both the structural annotation and the labeling of insert versus consensus columns
is given in the input file, as shown in the alignment in Figure 1, where both are are indicated by the WUSS
notation in the [structure] line (where, e.g., insert columns are marked with.). (In practice,cmbuild

does need secondary structure annotation, but it doesn’t require insert/consensus annotation or full WUSS
notation in its input alignment files; this would require a lot of manual annotation. More on this later.)

Given the consensus structure, consensus base pairs are assigned to MATP nodes and consensus un-
paired columns are assigned to MATL or MATR nodes. One ROOT node is used at the head of the tree.
Multifurcation loops and/or multiple stems are dealt with by assigning one or more BIF nodes that branch
to subtrees starting with BEGL or BEGR head nodes. (ROOT, BEGL, and BEGR start nodes are labeled
differently because they will be expanded to different groups of states; this has to do with avoiding ambigu-
ous parse trees for individual sequences, as described below.) Alignment columns that are considered to be
insertions relative to the consensus structure are ignored at this stage.

In general there will be more than one possible guide tree for any given consensus structure. Almost all
of this ambiguity is eliminated by three conventions: (1) MATL nodes are always used instead of MATR
nodes where possible, for instance in hairpin loops; (2) in describing interior loops, MATL nodes are used
before MATR nodes; and (3) BIF nodes are only invoked where necessary to explain branching secondary
structure stems (as opposed to unnecessarily bifurcating in single stranded sequence). One source of ambi-
guity remains. In invoking a bifurcation to explain alignment columnsi..j by two substructures on columns

17

i..k andk + 1..j, there will be more than one possible choice ofk if i..j is a multifurcation loop containing
three or more stems. The choice ofk impacts the performance of the divide and conquer algorithm; for
optimal time performance, we will want bifurcations to split into roughly equal sized alignment problems,
so I choose thek that makesi..k andk + 1..j as close to the same length as possible.

The result of this procedure is the guide tree. The nodes of the guide tree are numbered in preorder
traversal (e.g. a recursion of “number the current node, visit its left child, visit its right child”: thus parent
nodes always have lower indices than their children). The guide tree corresponding to the input multiple
alignment in Figure 1 is shown in Figure 2.

From guide tree to covariance model

A CM must deal with insertions and deletions in individual sequences relative to the consensus structure.
For example, for a consensus base pair, either partner may be deleted leaving a single unpaired residue, or
the pair may be entirely deleted; additionally, there may be inserted nonconsensus residues between this pair
and the next pair in the stem. Accordingly, each node in the master tree is expanded into one or morestates
in the CM as follows:

total # # of split # of insert
Node States states states states
MATP [MP ML MR D] IL IR 6 4 2
MATL [ML D] IL 3 2 1
MATR [MR D] IR 3 2 1
BIF [B] 1 1 0
ROOT [S] IL IR 3 1 2
BEGL [S] 1 1 0
BEGR [S] IL 2 1 1
END [E] 1 1 0

Here we distinguish between consensus (“M”, for “match”) states and insert (“I”) states. ML and IL, for
example, are both L type states with L type productions, but they will have slightly different properties, as
described below.

The states are grouped into asplit setof 1-4 states (shown in brackets above) and aninsert setof 0-2
insert states. The split set includes the main consensus state, which by convention is first. One and only one
of the states in the split set must be visited in every parse tree (and this fact will be exploited by the divide
and conquer algorithm). The insert state(s) are not obligately visited, and they have self-transitions, so they
will be visited zero or more times in any given parse tree.

State transitions are then assigned as follows. For bifurcation nodes, the B state makes obligate transi-
tions to the S states of the child BEGL and BEGR nodes. For other nodes, each state in a split set has a
possible transition to every insert state in thesamenode, and to every state in the split set of thenextnode.
An IL state makes a transition to itself, to the IR state in the same node (if present), and to every state in the
split set of the next node. An IR state makes a transition to itself and to every state in the split set of the next
node.

This arrangement of transitions guarantees that (given the guide tree) there is unambiguously one and
only one parse tree for any given individual structure. This is important. The algorithm will find a maximum
likelihood parse tree for a given sequence, and we wish to interpret this result as a maximum likelihood

18

structure, so there must be a one to one relationship between parse trees and secondary structures (Giegerich,
2000).

The final CM is an array ofM states, connected as a directed graph by transitionstv(y) (or probability
1 transitionsv → (y, z) for bifurcations) with the states numbered such that(y, z) ≥ v. There are no cycles
in the directed graph other than cycles of length one (e.g. the self-transitions of the insert states). We can
think of the CM as an array of states in which all transition dependencies run in one direction; we can do
an iterative dynamic programming calculation through the model states starting with the last numbered end
stateM and ending in the root state1. An example CM, corresponding to the input alignment of Figure 1,
is shown in Figure 3.

As a convenient side effect of the construction procedure, it is guaranteed that the transitions from any
state are to acontiguousset of child states, so the transitions for statev may be kept as an offset and a
count. For example, in Figure 3, state 12 (an MP) connects to states 16, 17, 18, 19, 20, and 21. We can
store this as an offset of 4 to the first connected state, and a total count of 6 connected states. We know
that the offset is the distance to the next non-split state in the current node; we also know that the count
is equal to the number of insert states in the current node, plus the number of split set states in the next
node. These properties make establishing the connectivity of the CM trivial. Similarly, all the parents of any
given state are also contiguously numbered, and can be determined analogously. We are also guaranteed that
the states in a split set are numbered contiguously. This contiguity is exploited by the divide and conquer
implementation.

Parameterization

Using the guide tree and the final CM, each individual sequence in the input multiple alignment can be
converted unambiguously to a CM parse tree, as shown in Figure 4. Weighted counts for observed state
transitions and singlet/pair emissions are then collected from these parse trees. These counts are converted
to transition and emission probabilities, as maximuma posterioriestimates using mixture Dirichlet priors.

Comparison to profile HMMs

The relationship between an SCFG and a covariance model is analogous to the relationship of hidden
Markov models (HMMs) and profile HMMs for modeling multiple sequence alignments (Krogh et al.,
1994; Durbin et al., 1998; Eddy, 1998). A comparison may be instructive to readers familiar with pro-
file HMMs. A profile HMM is a repetitive HMM architecture that associates each consensus column of a
multiple alignment with a single type of model node – a MATL node, in the above notation. Each node
contains a “match”, “delete”, and “insert” HMM state – ML, IL, and D states, in the above notation. The
profile HMM also has special begin and end states. Profile HMMs could therefore be thought of as a special
case of CMs. An unstructured RNA multiple alignment would be modeled by a guide tree of all MATL
nodes, and converted to an unbifurcated CM that would essentially be identical to a profile HMM. (The only
difference is trivial; the CM root node includes a IR state, whereas the start node of a profile HMM does
not.) All the other node types (especially MATP, MATR, and BIF) and state types (e.g. MP, MR, IR, and B)
are SCFG augmentations necessary to extend profile HMMs to deal with RNA secondary structure.

The cmbuild program, step by step

Thecmbuild command line syntax is:
> cmbuild <options> [cmfile] [alifile]

19

S 1
IL 2
IR 3
ML 4
D 5
IL 6

ML 7
D 8
IL 9
B 10
S 11

MP 12
ML 13
MR 14
D 15
IL 16
IR 17

MP 18
ML 19
MR 20
D 21
IL 22
IR 23

MR 24
D 25
IR 26

MP 27
ML 28
MR 29
D 30
IL 31
IR 32
ML 33
D 34
IL 35

ML 36
D 37
IL 38

ML 39
D 40
IL 41

ML 42
D 43
IL 44
E 45
S 46
IL 47

ML 48
D 49
IL 50

MP 51
ML 52
MR 53
D 54
IL 55
IR 56

MP 57
ML 58
MR 59
D 60
IL 61
IR 62
ML 63
D 64
IL 65

MP 66
ML 67
MR 68
D 69
IL 70
IR 71
ML 72
D 73
IL 74

ML 75
D 76
IL 77

ML 78
D 79
IL 80
E 81

R OOT 1

MA T L 2

MA T L 3

B IF 4
B E G L 5

MA T P 6

MA T P 7

MA T R 8

MA T P 9

MA T L 10

MA T L 11

MA T L 12

MA T L 13

E ND 14

B E G R 15

MA T L 16

MA T P 17

MA T P 18

MA T L 19

MA T P 20

MA T L 21

MA T L 22

MA T L 23

E ND 24

MP 12 ML 13 MR 14 D 15

IL 16 IR 17

"split set"

 inserts

"split set"

 inserts

"split set"

insert

MA T P 6

MA T P 7

MA T R 8

MP 18 ML 19 MR 20 D 21

IL 22 IR 23

MR 24 D 25

IR 26

Figure 3:A complete covariance model.Right: the CM corresponding to the alignment in Figure 1. The model has
81 states (boxes, stacked in a vertical array). Each state is associated with one of the 24 nodes of the guide tree (text
to the right of the state array). States corresponding to the consensus are in white. States responsible for insertions
and deletions are gray. The transitions from bifurcation state B10 to start states S11 and S46 are in bold because they
are special: they are an obligate (probability 1) bifurcation. All other transitions (thin arrows) are associated with
transition probabilities. Emission probability distributions are not represented in the figure. Left: the states are also
arranged according to the guide tree. A blow up of part of the model corresponding to nodes 6, 7, and 8 shows more
clearly the logic of the connectivity of transition probabilities (see main text), and also shows why any parse tree must
transit through one and only one state in each “split set”.

20

S 1

ML 4

ML 7

B 10

S 11

MP 12

MP 18

MR 24

MP 27

ML 33

ML 36

ML 39

ML 42

E 45

S 46

ML 48

MP 51

MP 57

ML 63

MP 66

ML 72

ML 75

ML 78

E 81

A
A

G
A

C
U
U
C
G

C
U
A
G

U
G
G
C
G
A
C
A

C
C

C

D 49

S 1

ML 4

ML 7

B 10

S 11

MP 12

MP 18

MR 24

MP 27

ML 33

ML 36

ML 39

ML 42

E 45

S 46

MP 51

MP 57

ML 63

MP 66

ML 72

ML 75

ML 78

E 81

U

A
A

A

C
A

C
U
U
C
G

G
U
A
G

C
A
C
C
A
A
A

G
U

G

IL 2

IR 3

D 43

IL 70

IL 80

S 1

ML 4

ML 7

B 10

S 11

MP 12

MP 18

MR 24

MP 27

ML 33

ML 36

ML 39

E 45

S 46

ML 48

MP 51

MP 57

ML 63

MP 66

ML 72

ML 75

ML 78

E 81

A
G

G
U

C
U
U
C

C
A
C
G

G
G
G
C
A
G
C
C
A
C

C
U

U

human: mouse: orc:

Figure 4: Example parse trees.Parse trees are shown for the three sequences/structures from Figure 1, given the
CM in Figure 3. For each sequence, each residue must be associated with a state in the parse tree. (The sequences
can be read off its parse tree by starting at the upper left and reading counterclockwise around the edge of parse tree.)
Each parse tree corresponds directly to a secondary structure – base pairs are pairs of residues aligned to MP states.
A collection of parse trees also corresponds to a multiple alignment, by aligning residues that are associated with the
same state – for example, all three trees have a residue aligned to state ML4, so these three residues would be aligned
together. Insertions and deletions relative to the consensus use nonconsensus states, shown in gray.

where[alifile] is the name of the input alignment file, and[cmfile] is the name of the output CM
file. What follows describes the steps thatcmbuild goes through, and the most important options that can
be chosen to affect its behavior.

Alignment input file

The input alignment file must be in Stockholm format, and it must have a consensus secondary structure
annotation line (#=GC SS_cons).

The program is actually capable of reading many common multiple alignment formats (ClustalW, PHYLIP,
GCG MSF, and others) but no other format currently supports consensus RNA secondary structure annota-
tion. This may change in the future, either when other formats allow structure annotation, or whencmbuild

is capable of inferring consensus structure from the alignment by automated comparative analysis, as the
earlier COVE suite was capable of (Eddy and Durbin, 1994).

If the file does not exist, is not readable, or is not in a recognized format, the program exits with a “could
not be opened for reading” error. If the file does not have consensus secondary structure annotation, the
program exits with a “no consensus structure annotation” error. This includes all non-Stockholm alignment
files.

. Why does cmbuild have a --informat option, if it only accepts Stockholm? If you don’t specify
--informat , the software has to autodetect the file format. Autodetection of file formats doesn’t work
in certain advanced/nonstandard cases, for instance if you’re reading the alignment from standard input
instead of from a file. The --informat allows you to override autodetection; e.g. cat my.sto
| cmbuild --informat Stockholm my.cm - is an example of reading the alignment from
piped standard input.

21

Parsing secondary structure annotation

The structure annotation line only needs to indicate which columns are base paired to which. It does not
have to be in full WUSS notation. Even if it is, the details of the notation are largely ignored. Nested pairs
of <>, () , [] , or {} symbols are interpreted as base paired columns. All other columns marked with the
symbols:,_-.˜ are interpreted as single stranded columns.

A simple minimal annotation is therefore to use<> symbols to mark base pairs and. for single stranded
columns.

If a secondary structure annotation line is in WUSS notation and it contains valid pseudoknot annotation
(e.g. additional non-nested stems marked with AAA,aaa or BBB,bbb, etc.), this annotation is removed and
a warning is printed.INFERNAL cannot handle pseudoknots. Internally, these columns are treated as if they
were marked with. symbols.

. How should I choose to annotate pseudoknots? INFERNAL can only deal with nested base pairs.
If there is a pseudoknot, you have to make a choice of which stem to annotate as normal nested struc-
ture (thus including it in the model) and which stem to call additional “pseudoknotted” structure (thus
ignoring it in the model). For example, for a simple two-stem pseudoknot, should you annotate it as
AAAA.<<<<aaaa....>>>> , or <<<<.AAAA>>>>....aaaa ? From an RNA structure viewpoint,
which stem I label as the pseudoknotted one is an arbitrary choice; but since one of the stems in the
pseudoknot will have to be modeled as a single stranded region by INFERNAL, the choice makes a slight
difference in the performance of your model. You want your model to capture as much information con-
tent as possible. Thus, since the information content of the model is a sum of the sequence conservation
plus the additional information contributed by pairwise correlations in base-paired positions, you should
tend to annotate the shorter stem as the “pseudoknot” (modeling as many base pairs as possible), and you
should also annotate the stem with the more conserved primary sequence as the “pseudoknot” (if one
stem is more conserved at the sequence level, you won’t lose as much by modeling that one as primary
sequence consensus only).

If (aside from any ignored pseudoknot annotation) the structure annotation line contains characters other
than<>()[]{}:_-,.˜ then those characters are ignored (treated as.) and a warning is printed.

If, after this “data cleaning”, the structure annotation is inconsistent with a secondary structure (for
example, if the number of< and> characters isn’t the same), then the program exits with a “failed to parse
consensus structure annotation” error.

Sequence weighting

By default, the input sequences are weighted in two ways to compensate for biased sampling (phylogenetic
correlations). Relative sequence weights are calculated by the Gerstein/Chothia/Sonnhammer method (Ger-
stein et al., 1994). (The--wgsc option forces GSC weights, but is redundant since that’s the default.) To
turn relative weighting off (e.g. set all weights to 1.0), use the--wnone option.

Some alignment file formats allow relative sequence weights to be given in the file. This includes
Stockholm format, which has#=GS WTweight annotations. Normallycmbuild ignores any such input
weights. The--wgiven option tellscmbuild to use them. This lets you set the weights with any external
procedure you like; for example, theweight utility program inSQUID implements some common weighting
algorithms, including the fastO(N) Henikoff position-based weights (Henikoff and Henikoff, 1994).

If for some reason you put more than one relative weighting option on the command line, the last one
you give is used.

. Why is cmbuild taking so much time? The GSC weighting algorithm scales as O(N2) with the
number of sequences N . Weighting may become rate-limiting for cmbuild if your alignment contains

22

many sequences. Model construction itself is fast. You might want to turn weighting off, or pre-calculate
the weights by a faster algorithm.

Absolute weights (the “effective sequence number”) is calculate by “entropy weighting” (Karplus et al.,
1998). This sets the balance between the prior and the data, and affects the information content of the model.
Entropy weighting reduces the effective sequence number (the total sum of the weights) and increases the
entropy (degrading the information content) of the model until a threshold is reached. The default entropy
is 1.46 bits per position (roughing 0.54 bits of information, relative to uniform base composition). This
threshold can be changed with the--etarget <x> option. Entropy weighting may be turned off entirely
with the--effnone option.

Architecture construction

The CM architecture is now constructed from your input alignment and your secondary structure annotation,
as described in the previous section.

The program needs to determine which columns are consensus (match) columns, and which are insert
columns. (Remember that although WUSS notation allows insertions to be annotated in the secondary
structure line,cmbuild is only paying attention to annotated base pairs.) By default, it does this by a
simple rule based on the frequency of gaps in a column. If the frequency of gaps is greater than a threshold,
the column is considered to be an insertion.

The threshold defaults to 0.5. It can be changed to another number<x> (from 0 to 1.0) by the--gapthresh

<x> option. The higher the number, the more columns are included in the model. At--gapthresh 1.0 ,
all the columns are considered to be part of the consensus. At--gapthresh 0.0 , none of them are (prob-
ably not a good idea).

You can also manually specify which columns are consensus versus insert by including reference coor-
dinate annotation (e.g. a#=GC RFline, in Stockholm format) and using the--rf option. Any columns
marked by non-gap symbols become consensus columns. (The simplest thing to do is mark consensus
columns with x’s, and insert columns with. ’s. Remember that spaces aren’t allowed in alignments in
Stockholm format.) If you set the--rf option but your file doesn’t have reference coordinate annotation,
the program exits with an error.

Parameterization

Weighted observed emission and transition counts are then collected from the alignment data. These count
vectorsc are then converted to estimated probabilitiesp using mixture Dirichlet priors. The default mixture
priors are described in (Nawrocki and Eddy, 2007). You can provide your own prior as a file, using the
--priorfile <f> option.

Naming the model

Each CM gets a name. Stockholm format allows the alignment to have a name, provided in the#=GF ID
tag. If this name is provided, it is used as the CM name.

If a name is not provided, the name is the input filename, without any extension – for example, if you
build a model from the alignment fileRNaseP.sto , the model will be named RNaseP.

You can override this and provide your own name with the-n <s> option, where<s> is any string.

23

Stockholm format also allows more than one alignment per file, andcmbuild supports this: CM files
can contain more than one model, and if you say e.g.cmbuild Rfam Rfam.sto whereRfam.sto con-
tains a whole database of alignments,cmbuild will create a database of CMs in theRfam file, one per
alignment. But in this case, obviously you don’t want them all to have the same name! Therefore when
running cmbuild on a multi-multiple alignment database file, the alignment database filemustprovide
#=GF ID tags with names for each alignment. If any alignment is found to not have one, the program exits
at that point with an error. Attempting to set the--n option for an alignment database also results in an
error.

Saving the model

The model is now saved to a file, according to the filename specified on the command line. By default, a
new file is created, and the model is saved in a portable ASCII text format.

If the cmfile already exists, the program exits with an error. The--F option causes the new model to
overwrite an existing cmfile. The--A option causes the new model to be appended to an existing cmfile
(creating a growing CM database, perhaps).

24

5 File and output formats

RNA secondary structures: WUSS notation

INFERNAL annotates RNA secondary structures using a linear string representation called “WUSS notation”
(Washington University Secondary Structure notation).

The symbology is extended from the common bracket notation for RNA secondary structures, where
open- and close-bracket symbols (or parentheses) are used to annotate base pairing partners: for example,
((((...)))) indicates a four-base stem with a three-base loop. Bracket notation is difficult for humans
to interpret, for anything much larger than a simple stem-loop. WUSS notation makes it somewhat easier to
interpret the annotation for larger structures.

The following figure shows an example with the key elements of WUSS notation. At the top left is
an example RNA structure. At the top right is the same structure, with different RNA structural elements
marked. Below both structure pictures : the WUSS notation string for the structure.

A
A

U
G

G C
G

G C
C
A
A

G

C
U

G

G
A U

C

G

C

UA

AA
C

A U

UC C

G

C

CU
U

GGC

5'
3'

A
A

U
G

G C
G

G C
C
A
A

G

C
U

G

G
A U

C

G

C

UA

AA
C

A U

UC C

G

C

CU
U

GGC

5'
3'

unstructured single strand

multi-branched loop

bulge loop

stem interior loop

hairpin loop

::((((,<<<___>>>,,,<<-<<____>>-->>,))-))
AACGGAACCAACAUGGAUUCAUGCUUCGGCCCUGGUCGCG

Full (output) WUSS notation

In detail, symbols used by WUSS notation inoutputstructure annotation strings are as follows:

Base pairs Base pairs are annotated by nested matching pairs of symbols<>, () , [] , or {} . The
different symbols indicate the “depth” of the helix in the RNA structure as follows:
<> are used for simple terminal stems;() are used for “internal” helices enclosing
a multifurcation of all terminal stems;[] are used for internal helices enclosing a
multifurcation that includes at least one annotated() stem already; and{} are used
for all internal helices enclosing deeper multifurcations.

Hairpin loops Hairpin loop residues are indicated by underscores,_. Simple stem loops stand out
as, e.g.<<<<____>>>> .

Bulge, interior loops Bulge and interior loop residues are indicated by dashes,- .

Multifurcation loops Multifurcation loop residues are indicated by commas,, . The mnemonic is “stem 1,
stem2”, e.g.<<<___>>>,,<<<___>>> .

25

External residues Unstructured single stranded residues completely outside the structure (unenclosed
by any base pairs) are annotated by colons,: .

Insertions Insertions relative to a known structure are indicated by periods,. . Regions where
local structural alignment was invoked, leaving regions of both target and query se-
quence unaligned, are indicated by tildes,˜ . These symbols only appear in align-
ments of a known (query) structure annotation to a target sequence of unknown struc-
ture.

PseudoknotsWUSS notation allows pseudoknots to be annotated as pairs of upper case/lower case
letters: for example,<<<<_AAAA____>>>>aaaa annotates a simple pseudoknot;
additional pseudoknotted stems could be annotated byBb, Cc, etc. INFERNAL can-
not handle pseudoknots, however; pseudoknot notation never appears inINFERNAL

output; it is accepted in input files, but ignored.

An example of WUSS notation for a complicated structure (E. coli RNase P) is shown in Figure 5. An
example of WUSS notation for a localINFERNAL alignment ofB. subtilisRNase P toE. coli RNase P,
illustrating the use of local alignment annotation symbols, is in Figure 6.

Shorthand (input) WUSS notation

While WUSS notation makes it easier to visually interpretINFERNAL outputstructural annotation, it would
be painful to be required toinput all structures in full WUSS notation. Therefore whenINFERNAL reads
input secondary structure annotation, it uses simpler rules:

Base pairs Any matching nested pair of() , () , [] , {} symbols indicates a base pair; the
exact choice of symbol has no meaning, so long as the left and right partners
match up.

Single stranded residuesAll other symbols_-,:.˜ indicate single stranded residues. The choice of
symbol has no special meaning. Annotated pseudoknots (nested matched pairs
of upper/lower case alphabetic characters) are also interpreted as single stranded
residue inINFERNAL input.

Thus, for instance,<<<<....>>>> and ((((____)))) and<(<(._._)>)> all indicate a four
base stem with a four base loop (the last example is legal but weird).

Remember that the key property of canonical (nonpseudoknotted) RNA secondary structure is that the
pairs arenested. ((<<....))>> is not a legal annotation string: the pair symbols don’t match up properly.
INFERNAL will reject such an annotation and report an input format error, suspecting a problem with your
annotation. If you want to annotate pseudoknots, WUSS notation allows alphabetic symbols Aa, Bb, etc.
see above; but remember thatINFERNAL ignores pseudoknotted stems and treats them as single stranded
residues.

Because many other RNA secondary structure analysis programs use a simple bracket notation for anno-
tating structure,INFERNAL’s ability to input this format makes it easier to use data generated by other RNA
software packages. Conversely, convertingINFERNAL output WUSS notation to simple bracket notation is
a matter of a simple Perl or sed script, substituting the symbols appropriately.

26

C

G

G A A G C U G A C C A G
A
C
A
G
U
CGCCGCUUCGUCGUC

G
UCCUCU

U
C

G G G G G A G A C G
G

G C G G A G G G G
A
G
G
A
A
A
G

U
C
C
G
G
G
CUCC

A
U

AG
G

G

A
GG

UGC
C

A
G

G
U

AA
C
G

C
C
U
G
G

GGGGG
A
A

A C C C
A

C G
AC

C A
G

U
G

C
A

A
C

A
G

A
G
A
G

C
A

A
A C

C
G
C
CG

A U
G
G
C
C
C
G
C

G
C A

A
G
C
G
G
G

A
U
C
A
G
G
U A

AG
G G

U
G

A
A
A
G
G G U G C G G U

A
A

GAG
CGCACC

G
C

G
C

G
G

C
U

G
G
U

AA
C

A
GU

C
C

G
U

GG
CACG

G
U A

AA
C

U
C

C A C C C G G A G C A A G G C C
A

A A U
A

G
G G G U U C

A
U A

A
G G U A C G

G
C

C
C

GUACUGAACCC
G

GGU
A

GGCU
G
C
U
U G A

CUA
G
A
U
G
A
A
U
G
A
C
U
G
U
C C A C G A C

A
G

A
ACCCGGCUU

A
U

C
GGUCAGUUUCACCU

5'

G C C A G U G A G
C
G

AUUGCUGGC

3'

P1

P2

P3

P4

P5

P6

P7

P
8

P9 P10

P
11

P12

P13

P14

P15 P16
P17

P18

R ibonuclease P R NA
E scherichia coli K -12 W3110

Sequence : V 00338, R eed, et al., 1982 Cell 30:627
Structure : Harris, et al., R NA (in press)

Image created 10/3/00 by JWB rown

{{{{{{{{{{{{{{{{{{,<<<<<<<<<<<<<-<<<<<____>>>>>>>>>->>>>>>>>
1 GAAGCUGACCAGACAGUCGCCGCUUCGUCGUCGUCCUCUUCGGGGGAGACGGGCGGAGGG 60

>,,,,,,,,,,,,,[[[[--------[[[[[<<<<<_____>>>>><<<<____>>>->(
61 GAGGAAAGUCCGGGCUCCAUAGGGCAGGGUGCCAGGUAACGCCUGGGGGGGAAACCCACG 120

(---(((((,,,,,,,,,,,,<<<<<--<<<<<<<<____>>>>>->>>>>>-->>,,,,
121 ACCAGUGCAACAGAGAGCAAACCGCCGAUGGCCCGCGCAAGCGGGAUCAGGUAAGGGUGA 180

,,,<<<<<<_______>>>>>><<<<<<<<<____>>>->>>>>->,,)))--))))]]]
181 AAGGGUGCGGUAAGAGCGCACCGCGCGGCUGGUAACAGUCCGUGGCACGGUAAACUCCAC 240

]]]]]],,,<<<<------<<<<<<----<<<<<_____>>>>>>>>>>>----->>>>,
241 CCGGAGCAAGGCCAAAUAGGGGUUCAUAAGGUACGGCCCGUACUGAACCCGGGUAGGCUG 300

,,,,,<<<<<<<<____>>>>>>>>,,,,,,,,,,}}}}}}}------------------
301 CUUGAGCCAGUGAGCGAUUGCUGGCCUAGAUGAAUGACUGUCCACGACAGAACCCGGCUU 360

-}-}}}}}}}}}}::::
361 AUCGGUCAGUUUCACCU 377

Figure 5: Example of WUSS notation. Top: Secondary structure ofE. coli RNase P, from Jim Brown’s RNase P
database (Brown, 1999). Bottom: WUSS notation for the same structure, annotating theE. coli RNase P sequence.
The P4 and P6 pseudoknots are not annotated in this example.

27

R ibonuclease P R NA
Bacillus subtilis 168

A

A

G U U C U U A A C G U U C G G
G
U
A
A
U
C

G
CUGCAGAUCU

U
G A A U C U G U A G

A
G
G
A
A
A
G

U
C
C
A
U
G
CUCGC

A
C
G
G

U
G
C

U
G

G
A

U
G
C
C
C
G
UA

GU
G U

U
CGU

GC
C

U
A

G
C
G
A

AGUC
A
U

A
A G

C
U

A
G

G
GCAGUCUU

U
A

G A G G C U G A
C G

G
C

A
G

G
AAAA

A
A

GCCUA
C

G
U

C
U

U
C G

G
A

U A
U
G G C

U G A
G

U
A
U

C
C

U
U

G
A

A
A
G

U
G

C
C

A
C
A
G

U
G

A C G A A
G

U C U C A C U A
G A

A
AUGGUGAGA

G
U

G
G

A
ACGCG

G
U

A
A

A
C

C
C
C U

C G A G C G A G A A A C C C
A

A A U
U
U

U
GGUA

GGG
G
A
A C C U U C U U

A
A C G G

A
A

U
U

C
A

ACGG

GAGAAGG
A C A G A A U

G
CU

UUCUGUA
G
A
U
A
G
A
U
G
A
U
U
G
C
C G C

C
U G

A
G

U
A

C
G

A
G

G
U
G

A U
G
A

G
C

C
G U

U
U

GC
A

G
U

A
C

G
A
U

G
G A A C

A
A

AACAUGGCUU
A

C
A

GAACGUUAG
ACCACUU

5'�

3�'

P1
P2

P3

P4

P5

P
5.

1

P7

P
8

P9

P10.1

P10

P11

P12

P15

P15.1

P18

P1
9

[102 nt]

[37 nt]

[64 nt]

40 nt insertion

hit 0 : 4 399 52.56 bits
{{{{{{{{{{{{{{{{{{,<<<<<<<<<<<<<-<<<<<____>>>>>>>>>->>>>>>>>

1 ggAGuggGgcaGgCaguCGCugcuucggccuuGuucaguuaacugaaaaggAccgaagga 60
+: :::G::C:GG:A:UCGCU+C:::: U+ ::::G+A

4 CUUAACGUUCGGGUAAUCGCUGCAGAUC-----------UUG----------AAUCUGUA 42

>,,,,,,,,,,,,,[[[.[--------[[[[[˜˜˜˜˜˜˜((---(((((,,,,˜˜˜˜˜˜)
61 GAGGAAAGUCCGGGCUC.CACAGGGCAgGGUG*[29]*GGAAAGUGCCACAG*[96]*G 229

GAGGAAAGUCC GCUC C A GG :G G :GAAAGUGCCACAG G
43 GAGGAAAGUCCAUGCUCgC--ACGGUGCUGAG*[102]*UGAAAGUGCCACAG*[37]*G 226

))--))))]]]]]].]]],,,˜˜˜˜˜˜,,,,,,,,,,}}}}}}}--..............
230 GUAAACCCCACCcG.GAGCAA*[77]*CuAGAUGAAUGacuGcCCA.............. 344

GUAAACC:C C: G GAG AA UAGAU++AUGA:U:CC
227 GUAAACCCCUCGAGcGAGAAA*[64]*GUAGAUAGAUGAUUGCC--gccugaguacgagg 342

..........................-----------------}-}}}}}}}}}}::::
345CGACAGAACCCGGCUUAuagcCccaCUccucuu 377

ACA AAC GGCUUA:AG::C::: :+ C
343 ugaugagccguuugcaguacgaugga--ACAAAACAUGGCUUACAGAACGUUAGACCAC 399

Figure 6:Local alignment annotation example.Top: Secondary structure ofB. subtilisRNase P, from Jim Brown’s
RNase P database (Brown, 1999). Residues in red are those thatINFERNAL aligns to a CM ofE. coli type RNase P’s.
The local structural alignment is in four pieces; three regions of the structure (102, 37, and 64 nt long) are skipped
over. One additional stem is treated as a 40 nt insertion. Bottom: theINFERNAL output, showing theE. coli query
structure aligned to theB. subtilissequence.

28

Multiple alignments: Stockholm format

The Pfam consortium developed an annotated alignment format called “Stockholm format”, and this format
has been adopted as the standard alignment format inHMMER andINFERNAL, and by the Rfam consortium.
The reasons for inventing a new alignment format were two-fold. First, there really is no standard accepted
format for multiple sequence alignment files, so we don’t feel guilty about inventing a new one. Second,
the formats of popular multiple alignment software (e.g. CLUSTAL, GCG MSF, PHYLIP) do not support
rich documentation and markup of the alignment. Stockholm format was developed to support extensible
markup of multiple sequence alignments, and we use this capability extensively in both RNA work (with
structural markup) and the Pfam database (with extensive use of both annotation and markup).

A minimal Stockholm file

STOCKHOLM 1.0

seq1 ACDEF...GHIKL
seq2 ACDEF...GHIKL
seq3 ...EFMNRGHIKL

seq1 MNPQTVWY
seq2 MNPQTVWY
seq3 MNPQT...

The simplest Stockholm file is pretty intuitive, easily generated in a text editor. It is usually easy to
convert alignment formats into a “least common denominator” Stockholm format. For instance, SELEX,
GCG’s MSF format, and the output of the CLUSTAL multiple alignment programs are all similar interleaved
formats.

The first line in the file must be# STOCKHOLM 1.x, wherex is a minor version number for the format
specification (and which currently has no effect on my parsers, other than identifying the file as Stockholm
format). This line allows a parser to instantly identify the file format.

In the alignment, each line contains a name, followed by the aligned sequence. A dash or period denotes
a gap. If the alignment is too long to fit on one line, the alignment may be split into multiple blocks, with
blocks separated by blank lines. The number of sequences, their order, and their names must be the same
in every block. Within a given block, each (sub)sequence (and any associated#=GRand#=GCmarkup, see
below) is of equal length, called theblock length. Block lengths may differ from block to block; the block
length must be at least one residue, and there is no maximum.

The sequence names must be unique. (They are used to associate markup tags with the sequences.)
Other blank lines are ignored. You can add comments to the file on lines starting with a#.
All other annotation is added using a tag/value comment style. The tag/value format is inherently exten-

sible, and readily made backwards-compatible; unrecognized tags will simply be ignored. Extra annotation
includes consensus and individual RNA or protein secondary structure, sequence weights, a reference co-
ordinate system for the columns, and database source information including name, accession number, and
coordinates (for subsequences extracted from a longer source sequence) See below for details.

Syntax of Stockholm markup

There are four types of Stockholm markup annotation, for per-file, per-sequence, per-column, and per-
residue annotation:

29

#=GF <tag> <s> Per-file annotation. <s> is a free format text line of annotation type
<tag> . For example,#=GF DATE April 1, 2000 . Can occur any-
where in the file, but usually all the#=GFmarkups occur in a header.

#=GS <seqname> <tag> <s> Per-sequence annotation.<s> is a free format text line of annotation
type tag associated with the sequence named<seqname> . For example,
#=GS seq1 SPECIES SOURCE Caenorhabditis elegans . Can oc-
cur anywhere in the file, but in single-block formats (e.g. the Pfam dis-
tribution) will typically follow on the line after the sequence itself, and
in multi-block formats (e.g. HMMER output), will typically occur in the
header preceding the alignment but following the#=GFannotation.

#=GC <tag> <s> Per-column annotation.<s> is an aligned text line of annotation type
<tag> . #=GClines are associated with a sequence alignment block;<s>

is aligned to the residues in the alignment block, and has the same length
as the rest of the block. Typically#=GClines are placed at the end of each
block.

#=GR <seqname> <tag> <s> Per-residue annotation.<s> is an aligned text line of annotation type
<tag> , associated with the sequence named<seqname> . #=GR lines
are associated with one sequence in a sequence alignment block;<s> is
aligned to the residues in that sequence, and has the same length as the
rest of the block. Typically#=GRlines are placed immediately following
the aligned sequence they annotate.

Semantics of Stockholm markup

Any Stockholm parser will accept syntactically correct files, but is not obligated to do anything with the
markup lines. It is up to the application whether it will attempt to interpret the meaning (the semantics) of
the markup in a useful way. At the two extremes are the Belvu alignment viewer and the HMMER profile
hidden Markov model software package.

Belvu simply reads Stockholm markup and displays it, without trying to interpret it at all. The tag types
(#=GF, etc.) are sufficient to tell Belvu how to display the markup: whether it is attached to the whole file,
sequences, columns, or residues.

HMMER and INFERNAL use Stockholm markup to pick up a variety of information from the multiple
alignment files. The Pfam and Rfam consortiums therefore agree on additional syntax for certain tag types,
so software can parse some markups for useful (or necessary) information. This additional syntax is imposed
by Pfam,HMMER, INFERNAL, and other software of mine, not by Stockholm format per se. You can think
of Stockholm as akin to XML, and what my software reads as akin to an XML DTD, if you’re into that sort
of structured data format lingo.

The Stockholm markup tags that are parsed semantically by my software are as follows:

Recognized #=GF annotations

ID <s> Identifier. <s> is a name for the alignment; e.g. “RNaseP. Mandatory, if the file is an alignment
database used as input forcmbuild , because each CM must get a unique name. One word. Unique
in file.

30

AC <s> Accession.<s> is a unique accession number for the alignment; e.g. “PF00001”. Used by the
Rfam database, for instance. Often a alphabetical prefix indicating the database (e.g. “RF”) fol-
lowed by a unique numerical accession. One word. Unique in file.

DE <s> Description.<s> is a free format line giving a description of the alignment; e.g. “Ribonuclease P
RNA”. One line. Unique in file.

AU <s> Author. <s> is a free format line listing the authors responsible for an alignment; e.g. “Bateman
A”. One line. Unique in file.

Recognized #=GS annotations

WT <f> Sequence weight.<f> is a positive real number giving the relative weight for a sequence, usually
used to compensate for biased representation by downweighting similar sequences. Usually the
weights average 1.0 (e.g. the weights sum to the number of sequences in the alignment) but this is
not required. Either every sequence must have a weight annotated, or none of them can.

AC <s> Accession.<s> is a database accession number for this sequence. (Compare the#=GF ACmarkup,
which gives an accession for the whole alignment.) One word.

DE <s> Description. <s> is one line giving a description for this sequence. (Compare the#=GF DE

markup, which gives a description for the whole alignment.)

Recognized #=GC annotations

RF Reference line. Any character is accepted as a markup for a column. The intent is to allow labeling
the columns with some sort of mark.cmbuild uses this annotation to determine which columns
are consensus versus insertion; insertion columns are annotated by a gap symbol, and consensus
columns by any non-gap symbol.

SS cons Secondary structure consensus. When this line is generated byINFERNAL, it is generated in full
WUSS notation. When it is read bycmbuild , it is interpreted more loosely, in shorthand (input)
WUSS notation: pairs of symbols<>, () , [] , or [] mark consensus base pairs, and symbols
:_-,.˜ mark single stranded columns.

Recognized #=GR annotations

SS Secondary structure for this sequence. See#=GC SScons above.

Sequence files: FASTA format

FASTA is probably the simplest of formats for unaligned sequences. FASTA files are easily created in a text
editor. Each sequence is preceded by a line starting with>. The first word on this line is the name of the
sequence. The rest of the line is a description of the sequence (free format). The remaining lines contain the
sequence itself. You can put as many letters on a sequence line as you want. For example:

>seq1 This is the description of my first sequence.
AGTACGTAGTAGCTGCTGCTACGTGCGCTAGCTAGTACGTCA CGACGTAGATGCTAGCTGACTCGATGC
>seq2 This is a description of my second sequence.
CGATCGATCGTACGTCGACTGATCGTAGCTACGTCGTACGTAG CATCGTCAGTTACTGCATGCTCG
CATCAGGCATGCTGCTGACTGATCGTACG

31

For better or worse, FASTA is not a documented standard. Minor (and major) variants are in widespread
use in the bioinformatics community, all of which are called “FASTA format”. My software attempts to cater
to all of them, and is tolerant of common deviations in FASTA format. Certainly anything that is accepted
by the database formatting programs in NCBI BLAST or WU-BLAST (e.g. setdb, pressdb, xdformat) will
also be accepted by my software. Blank lines in a FASTA file are ignored, and so are spaces or other gap
symbols (dashes, underscores, periods) in a sequence. Other non-amino or non-nucleic acid symbols in the
sequence are also silently ignored, mostly because some people seem to think that “*” or “.” should be added
to protein sequences to (redundantly) indicate the end of the sequence. The parser will also accept unlimited
line lengths, which allows it to accomodate the enormous description lines in the NCBI NR databases.

(On the other hand, any FASTA filesgeneratedby my software adhere closely to community standards,
and should be usable by other software packages (BLAST, FASTA, etc.) that are more picky about parsing
their input files. That means you can run a sloppy FASTA file thru thesreformat utility program to clean
it up.)

Partly because of this tolerance, the software may have a difficult time dealing with files that arenot
in FASTA format, especially if you’re relying on file format autodetection (the “Babelfish”). Some (now
mercifully uncommon) file formats are so similar to FASTA format that they be erroneously called FASTA
by the Babelfish and then quietly and lethally misparsed. An example is the old NBRF file format. If you’re
afraid of this, you can use the--informat fasta option to bypass the Babelfish and improve robustness.
However, it is still possible to construct files perversely similar to FASTA that will still confuse the parser.
(The gist of these caveats applies to all formats, not just FASTA.)

CM file format

The default CM file format is a simple, extensible tag-value format. The format being used right now is
tentative and likely to change. Therefore, it is not currently documented here. If you absolutely need to
interpret it, see the filecmio.c in the source code.

Dirichlet prior files

A prior file is parsed into a number of whitespace-delimited, non-comment fields. These fields are then
interpreted in order. The order and number of the fields is important. This is not a robust, tag-value save file
format.

All whitespace is ignored, including newlines. The number of fields per line is unimportant.
Comments begin with a# character. The remainder of any line following a# is ignored.
The Infernal source distribution includes an example prior file,default.pri . This prior is identical to

the hardcoded default prior used by Infernal. The following text may only make sense if you’re looking at
that example while you read.

The order of the fields in the prior file is as follows:

Strategy. The first field is the keywordDirichlet . Currently Dirichlet priors (mixture or not) are the only
prior strategy used by Infernal.

Transition prior section. The next field is the number74, the number of different types of transition dis-
tributions. (See Figure 7 for an explanation of where the number 74 comes from.) Then, for each of
these 74 distributions:

32

<from-uniqstate> <to-node> : Two fields give the transition type: from a unique state identi-
fier, to a node identifier. Example:MATPMP MATP.

<n>: One field gives the number of transition probabilities for this transition type; that is, the number
of Dirichlet parameter vectorαq

1..α
q
n for each mixture componentq.

<nq> : One field gives the number of mixture Dirichlet components for this transition type’s prior.
Then, for each of thesenq Dirichlet components:

p(q) : One field gives the mixture coefficientp(q), the prior probability of this componentq.
For a single-component “mixture”, this is always 1.0.

αq
1..αq

n: The nextn fields give the Dirichlet parameter vector for this mixture componentq.

Base pair emission prior section.This next section is the prior for MATPMP emissions. One field gives
<K>, the “alphabet size” – the number of base pair emission probabilities – which is always 16 (4x4),
for RNA. The next field gives<nq> , the number of mixture components. Then, for each of thesenq

Dirichlet components:

p(q) : One field gives the mixture coefficientp(q), the prior probability of this componentq. For a
single-component “mixture”, this is always 1.0.

αq
AA..αq

UU: The next 16 fields give the Dirichlet parameter vector for this mixture component, in
alphabetical order (AA, AC, AG, AU, CA . . . GU, UA, UC, UG, UU).

Consensus singlet base emission prior section.This next section is the prior for MATLML and MATR MR
emissions. One field gives<K>, the “alphabet size” – the number of singlet emission probabilities –
which is always 4, for RNA. The next field gives<nq> , the number of mixture components. Then, for
each of thesenq Dirichlet components:

p(q) : One field gives the mixture coefficientp(q), the prior probability of this componentq. For a
single-component “mixture”, this is always 1.0.

αq
A..αq

U: The next 4 fields give the Dirichlet parameter vector for this mixture component, in alpha-
betical order (A, C, G, U).

Nonconsensus singlet base emission prior section.This next section is the prior for insertions (MATPIL,
MATP IR, MATL IL, MATR IR, ROOT IL, ROOT IR, BEGR IL) as well as nonconsensus singlets
(MATP ML, MATP MR). One field gives<K>, the “alphabet size” – the number of singlet emis-
sion probabilities – which is always 4, for RNA. The next field gives<nq> , the number of mixture
components. Then, for each of thesenq Dirichlet components:

p(q) : One field gives the mixture coefficientp(q), the prior probability of this componentq. For a
single-component “mixture”, this is always 1.0.

αq
A..αq

U: The next 4 fields give the Dirichlet parameter vector for this mixture component, in alpha-
betical order (A, C, G, U).

33

MATP
BIF

MATR
BEGL
BEGR
ROOT

END

MATL

M
AT

P
B

IF

M
AT

R
B

E
G

L
B

E
G

R
R

O
O

T
E

N
D

M
AT

L

(6)
(3)
(3)
(1)
(2)
(3)

(no transitions
 from end)

(bifurcs forced
 to BEGL, BEGR)

only reached
from BIF

start
only

35

6
6 4

2

1
1

STL9/63

30
15
9
2
6

12

74
transition

priors

from node:

to node:

Figure 7:Where does the magic number of 74 transition distribution types come from?The transition distribu-
tions are indexed in a 2D array, from a unique statetype (20 possible) to a downstream node (8 possible), so the total
conceivable number of different distributions is20× 8 = 160. The grid represents these possibilities by showing the
8× 8 array of all node types to all node types; each starting node contains 1 or more unique states (number in paren-
theses to the left). Two rows are impossible (gray): bifurcations automatically transit to determined BEGL, BEGR
states with probability 1, and end nodes have no transitions. Three columns are impossible (gray): BEGL and BEGR
can only be reached by probability 1 transitions from a bifurcation, and the ROOT node is special and can only start
a model. Eight individual cells of the grid are unused (black) because of the waycmbuild (almost) unambiguously
constructs a guide tree from a consensus structure. These cases are numbered as follows. (1) BEGL and BEGR never
transit to END; this would imply an empty substructure. A bifurcation is only used if both sides of the split contain at
least one consensus pair (MATP). (2) ROOT never transits to END; this would imply an alignment with zero consensus
columns. Infernal models assume≥ 1 consensus columns. (3) MATR never transits to END. Infernal always uses
MATL for unpaired columns whenever possible. MATR is only used for internal loops, multifurcation loops, and 3’
bulges, so MATR must always be followed by a BIF, MATP, or another MATR. (4) BEGL never transits to MATR.
The single stranded region between two bifurcated stems is unambiguously assigned to MATL nodes on the right side
of the split, not to MATR nodes on the left. (5) MATR never transits to MATL. The only place where this could arise
(given that we already specified that MATL is used whenever possible) is in an interior loop; there, by unambiguous
convention, MATL nodes precede MATR nodes. (6) BEGL nodes never transit to MATL, and BEGR nodes never
transit to MATR. By convention, at any bifurcated subsequencei, j, i andj are paired but not to each other. That is,
the smallest possible subsequence is bifurcated, so that any single stranded stretches to the left and right are assigned
to MATL and MATR nodes above the bifurcation, instead of MATL nodes below the BEGL and MATR nodes below
the BEGR. Thus, the total number 74 comes from multiplying, for each row, the number of unique states in each
starting node by the number of possible downstream nodes (white), and summing these up, as shown to the left of the
grid.

34

6 Manual pages

cmalign - use a CM to make a structure RNA multiple alignment

Synopsis

cmalign [options] cmfile seqfile

Description

cmalign aligns the RNA sequences inseqfileto the covariance model (CM) incmfile,and outputs a multiple
sequence alignment.

The sequence file can be in most any common biosequence format, including alignment file formats (in
which case the sequences will be read as if they were unaligned). FASTA format is recommended.

CM files are profiles of RNA consensus secondary structure. A CM file is produced by thecmbuild pro-
gram, from a given RNA sequence alignment of known consensus structure.

The alignment thatcmbuild makes is written in Stockholm format. It can be redirected to a file using the-o
option.

Options

-h Print brief help; includes version number and summary of all options, including
expert options.

-l Turn on the local alignment algorithm, which allows the alignment to span two or
more subsequences if necessary (e.g. if the structures of the query model and target
sequence are only partially shared), allowing certain large insertions and deletions
in the structure to be penalized differently than normal indels. The default is to
globally align the query model to the target sequences.

-o <f> Save the alignment in Stockholm format to a file<f>. The default is to write it to
standard output.

-q Quiet; suppress the verbose banner, and only print the resulting alignment to stdout.
This allows piping the alignment to the input of other programs, for example.

Expert Options

--informat <s> Assert that the inputseqfileis in format<s>. Do not run Babelfish format autodec-
tion. This increases the reliability of the program somewhat, because the Babelfish
can make mistakes; particularly recommended for unattended, high-throughput
runs of Infernal. <s> is case-insensitive; valid formats include FASTA, GEN-
BANK, EMBL, GCG, PIR, STOCKHOLM, SELEX, MSF, CLUSTAL, and PHYLIP.
See the User’s Guide for a complete list.

35

--nosmall Use the normal CYK alignment algorithm. The default is to use the divide and
conquer algorithm described in SR Eddy, BMC Bioinformatics 3:18, 2002. This is
useful for debugging, and checking that the two algorithms give identical results.
The ”normal” algorithm requires too much memory for most uses.

--regress<f> Save regression test information to a file<f>. This is part of the automated testing
procedure at each release.

36

cmbuild - construct a CM from an RNA multiple sequence alignment

Synopsis

cmbuild [options] cmfile alifile

Description

cmbuild reads an RNA multiple sequence alignment fromalifile, constructs a covariance model (CM), and
saves the CM tocmfile.

The alignment file must be in Stockholm format, and must contain consensus secondary structure annotation.
cmbuild uses the consensus structure to determine the architecture of the CM.

The alignment file may be a database containing more than one alignment. If it does, the resultingcmfile
will be a database of CMs, one per alignment. In this case, each alignment must have a name (a #=GF ID
tag, in Stockholm format).

Options

-h Print brief help; includes version number and summary of all options, including
expert options.

-n <s> Name the covariance model<s>. (Does not work ifalifile contains more than one
alignment.) The default is to use the name of the alignment (given by the #=GF ID
tag, in Stockholm format), or if that is not present, to use the name of the alignment
file minus any file type extension (that is, a file ”myrnas.sto” would give a CM
named ”myrnas”).

-A Append the CM tocmfile,if cmfilealready exists.

-F Allow cmfileto be overwritten. Normally, ifcmfilealready exists,cmbuild exits
with an error unless the-A or -F option is set.

Expert Options

--binary Save the model in a compact binary format. The default is a more readable ASCII
text format.

--rf Use reference coordinate annotation (#=GC RF line, in Stockholm) to determine
which columns are consensus, and which are inserts. Any non-gap character indi-
cates a consensus column. (For example, mark consensus columns with ”x”, and
insert columns with ”.”.) The default is to determine this automatically; if the fre-
quency of gap characters in a column is greater than a threshold, gapthresh (default
0.5), the column is called an insertion.

37

--gapthresh<x> Set the gap threshold (used for determining which columns are insertions versus
consensus; see above) to<x>. The default is 0.5.

--informat <s> Assert that the inputalifile is in format<s>. Do not run Babelfish format autodec-
tion. This increases the reliability of the program somewhat, because the Babelfish
can make mistakes; particularly recommended for unattended, high-throughput
runs of Infernal. <s> is case-insensitive. This option is a bit forward-looking;
cmbuild currently only accepts Stockholm format, but this may not be true in the
future.

--wgiven Use sequence weights as given in annotation in the input alignment file. If no
weights were given, assume they are all 1.0. The default is to determine new
sequence weights by the Gerstein/Sonnhammer/Chothia algorithm, ignoring any
annotated weights.

--wnone Turn sequence weighting off; e.g. explicitly set all sequence weights to 1.0.

--wgsc Use the Gerstein/Sonnhammer/Chothia weighting algorithm. This is the default, so
this option is probably useless.

--cfile <f> Save a file containing observed count vectors (both emissions and transitions) to a
counts file<f>. One use for this file is as the starting point for estimating Dirichlet
priors from observed RNA structure data.

--cmtbl <f> Save a tabular description of the CM’s topology to a file<f>. Primarily useful for
debugging CM architecture construction.

--emap<f> Save a consensus emission map to a file<f>. This file relates the numbering
system of states in the CM’s tree-like directed graph to the linear numbering of
consensus columns. Primarily useful for debugging.

--gtree<f> Save an ASCII picture of the high level structure of the CM’s guide tree to a file
<f>. Primarily useful for debugging.

--gtbl <f> Save a tabular description of the nodes in CM’s guide tree to a file<f>. Primarily
useful for debugging.

--tfile <f> Dump tabular inferred sequence tracebacks for each individual training sequence
to a file<f>. Primarily useful for debugging.

--nobalance Turn off the architecture ”rebalancing” algorithm. The nodes in a CM are initially
numbered in standard preorder traversal. The rebalancing algorithm is an optimizer
that reorders the numbering of the CM in order to absolutely guarantee certain
algorithmic performance bounds. However, it is a stylistic riff that has almost no
real empirical impact on performance, and is a tricky algorithm to get right. This
option was inserted for debugging purposes. It is sometimes also useful to obtain a
simple preorder traversal numbering system in the CM architecture (for illustrative
purposes, for example).

38

--regress<f> Save regression test information to a file<f>. This is part of the automated testing
procedure at each release.

--treeforce After building the model, score the first sequence in the alignment using its inferred
parsetree, and show both the score and the parsetree. This is a debugging tool, used
to specify and score a particular desired parsetree.

39

cmscore - align and score one or more sequences to a CM

Synopsis

cmscore[options] cmfile seqfile

Description

cmscoreuses the covariance model (CM) incmfileto align and score the sequences inseqfile,and output
the score and optimal alignment for each one.cmscore is a testbed for new CM alignment algorithms, and
it is also used by the testsuite. It is not intended to be particularly useful in the real world. Documentation
is provided for completeness, and to aid my own memory.

Currently,cmscorealigns the sequence(s) by both the full CYK algorithm and the divide and conquer variant
(SR Eddy, BMC Bioinformatics 3:18, 2002), and outputs both parse trees.

Usually, the two parse trees should be identical for any sequence. However, there can be cases of ties, where
two or more different parse trees have identical scores. In such cases, it is possible for the two parse trees
to differ. The parse tree selected as ”optimal” from amongst the ties is arbitrary, dependent on order of
evaluation in the DP traceback, and the order of evaluation for D&C vs. standard CYK is different. Thus, in
its testsuite role,cmscore checks that the scores are within 0.01 bits of each other, but does not check that
the parse trees are absolutely identical; identity can be checked for using the--stringent option.

The sequence file can be in most any common biosequence format, including alignment file formats (in
which case the sequences will be read as if they were unaligned). FASTA format is recommended.

The sequences are treated as single stranded RNAs; that is, only the given strand of each sequence is aligned
and scored, and no reverse complementing is done.

CM files are profiles of RNA consensus secondary structure. A CM file is produced by thecmbuild pro-
gram, from a given RNA sequence alignment of known consensus structure.

Options

-h Print brief help; includes version number and summary of all options, including
expert options.

Expert Options

--informat <s> Assert that the inputseqfileis in format<s>. Do not run Babelfish format autodec-
tion. This increases the reliability of the program somewhat, because the Babelfish
can make mistakes; particularly recommended for unattended, high-throughput
runs of Infernal. <s> is case-insensitive; valid formats include FASTA, GEN-
BANK, EMBL, GCG, PIR, STOCKHOLM, SELEX, MSF, CLUSTAL, and PHYLIP.
See the User’s Guide for a complete list.

40

--local Turn on the local alignment algorithm, which allows the alignment to span two or
more subsequences if necessary (e.g. if the structures of the query model and target
sequence are only partially shared), allowing certain large insertions and deletions
in the structure to be penalized differently than normal indels. The default is to
globally align the query model to the target sequences.

--regress<f> Save regression test information to a file<f>. This is part of the automated testing
procedure at each release.

--scoreonly Do the small memory ”score only” variant of the standard CYK alignment algo-
rithm, and don’t recover a parse tree.

--smallonly Skip the standard CYK algorithm; do only the divide and conquer algorithm.

--stringent Require the two parse trees to be identical; fail and return a non-zero exit code
if they are not. Normally,cmscore only requires that the two parse trees have
identical scores (within a floating point tolerance of 0.01 bits), because it is possible
to have more than one parse tree with the same score.

--X Project X. Undocumented. No serviceable parts inside. Using this option voids
your warranty. Do not attempt. Professional driver on a closed course. May induce
dizziness and vomiting.

41

cmsearch - search a sequence database for RNAs homologous to a CM

Synopsis

cmsearch[options] cmfile seqfile

Description

cmsearchuses the covariance model (CM) incmfileto search for homologous RNAs inseqfile,and outputs
high-scoring alignments.

The sequence file can be in most any common biosequence format, including alignment file formats (in
which case the sequences will be read as if they were unaligned). FASTA format is recommended.

CM files are profiles of RNA consensus secondary structure. A CM file is produced by thecmbuild pro-
gram, from a given RNA sequence alignment of known consensus structure.

The output thatcmsearchproduces is currently extremely rudimentary. All hits of score greater than zero
bits are output as alignments, in the order they are found. Niceties like ranking hits by their score, E-values,
and reporting thresholds will come later.

Options

-h Print brief help; includes version number and summary of all options, including
expert options.

-W <n> Set the scanning window width to<n>. This is the maximum length of a homol-
ogous sequence. By default, this is set to 200, which will be too small for many
RNAs. In the future, this number will be automatically set to something sensible,
instead of relying on you setting it sensibly on the command line.

Expert Options

--informat <s> Assert that the inputseqfileis in format<s>. Do not run Babelfish format autodec-
tion. This increases the reliability of the program somewhat, because the Babelfish
can make mistakes; particularly recommended for unattended, high-throughput
runs of Infernal. <s> is case-insensitive; valid formats include FASTA, GEN-
BANK, EMBL, GCG, PIR, STOCKHOLM, SELEX, MSF, CLUSTAL, and PHYLIP.
See the User’s Guide for a complete list.

--toponly Only search the top (Watson) strand of the sequences inseqfile.By default, both
strands are searched.

--local Turn on the local alignment algorithm, which allows the alignment to span two or
more subsequences if necessary (e.g. if the structures of the query model and target
sequence are only partially shared), allowing certain large insertions and deletions

42

in the structure to be penalized differently than normal indels. The default is to
globally align the query model to the target sequences.

--dumptrees Dump verbose, ugly parse trees for each hit. Useful only for debugging purposes.

43

References

Brown, J. W. (1999). The ribonuclease P database.Nucl. Acids Res., 27:314.

Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G. J. (1998).Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge UK.

Eddy, S. R. (1998). Profile hidden Markov models.Bioinformatics, 14:755–763.

Eddy, S. R. (2002). A memory-efficient dynamic programming algorithm for optimal alignment of a se-
quence to an RNA secondary structure.BMC Bioinformatics, 3:18.

Eddy, S. R. and Durbin, R. (1994). RNA sequence analysis using covariance models.Nucl. Acids Res.,
22:2079–2088.

Gerstein, M., Sonnhammer, E. L. L., and Chothia, C. (1994). Volume changes in protein evolution.J. Mol.
Biol., 235:1067–1078.

Giegerich, R. (2000). Explaining and controlling ambiguity in dynamic programming. In Giancarlo, R. and
Sankoff, D., editors,Proceedings of the 11th Annual Symposium on Combinatorial Pattern Matching,
number 1848, pages 46–59, Montréal, Canada. Springer-Verlag, Berlin.

Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., and Eddy, S. R. (2003). Rfam: an RNA family
database.Nucl. Acids Res., 31:439–441.

Henikoff, S. and Henikoff, J. G. (1994). Position-based sequence weights.J. Mol. Biol., 243:574–578.

Karplus, K., Barrett, C., and Hughey, R. (1998). Hidden Markov models for detecting remote protein
homologies.Bioinformatics, 14:846–856.

Krogh, A., Brown, M., Mian, I. S., Sjolander, K., and Haussler, D. (1994). Hidden Markov models in
computational biology: Applications to protein modeling.J. Mol. Biol., 235:1501–1531.

Nawrocki, E. P. and Eddy, S. R. (2007). Query-dependent banding (QDB) for faster RNA similarity searches.
Manuscript submitted.

44

	Introduction
	Installation
	Quick installation instructions
	More detailed installation notes
	setting installation targets
	setting compiler and compiler flags
	turning on Large File Support (LFS)
	installing rigorous filters

	Example configuration

	Getting started
	Format of a simple input RNA alignment file
	Building a model with cmbuild
	Searching a sequence database with cmsearch
	Creating new multiple alignments with cmalign
	Using optional annotation to completely specify model architecture to cmbuild
	Using local alignment in cmsearch and cmalign
	An important limitation to cmsearch: the -W option
	Getting more information

	Profile SCFG construction: the cmbuild program
	Technical description of a covariance model
	Definition of a stochastic context free grammar
	SCFG productions allowed in CMs
	From consensus structural alignment to guide tree
	From guide tree to covariance model
	Parameterization
	Comparison to profile HMMs

	The cmbuild program, step by step
	Alignment input file
	Parsing secondary structure annotation
	Sequence weighting
	Architecture construction
	Parameterization
	Naming the model
	Saving the model

	File and output formats
	RNA secondary structures: WUSS notation
	Full (output) WUSS notation
	Shorthand (input) WUSS notation

	Multiple alignments: Stockholm format
	A minimal Stockholm file
	Syntax of Stockholm markup
	Semantics of Stockholm markup
	Recognized #=GF annotations
	Recognized #=GS annotations
	Recognized #=GC annotations
	Recognized #=GR annotations

	Sequence files: FASTA format
	CM file format
	Dirichlet prior files

	Manual pages
	cmalign - use a CM to make a structure RNA multiple alignment
	Synopsis
	Description
	Options
	Expert Options

	cmbuild - construct a CM from an RNA multiple sequence alignment
	Synopsis
	Description
	Options
	Expert Options

	cmscore - align and score one or more sequences to a CM
	Synopsis
	Description
	Options
	Expert Options

	cmsearch - search a sequence database for RNAs homologous to a CM
	Synopsis
	Description
	Options
	Expert Options

