R-scape User’s Guide

RNA Significant Covariation Above Phylogenetic Expectation

Version v1.5.16; August 2020

Elena Rivas
elenarivas@fas.harvard.edu
Department of Molecular and Cellular Biology
Harvard University
16 Divinity Avenue
Cambridge MA 02138 USA
http://rivaslab.org/
Contents

1 Introduction ... 4
 How to avoid reading this manual 4
 How do I cite R-scape? 4

2 Installation .. 5
 Quick installation instructions 5
 System requirements 5
 Makefile targets ... 6
 Why is the output of "make" so clean? 6
 What gets installed by "make install", and where? 6

3 Tutorial ... 7
 Modes of R-scape .. 7
 The four options to run R-scape 7
 Option --RAF(S) disallowed 8
 Files used in the tutorial 8
 Running R-scape on one alignment file 9
 The --fold option .. 10
 Example of an RNA with pseudoknots 13
 Single sequence structure prediction 16
 Default parameters 16

4 Inputs ... 18
 The Stockholm format to describe a consensus structure . 18
 A extended Stockholm format to describe consensus structures with overlapping base pairs 18

5 Outputs .. 19
 Covariation tabular output 19
 Power tabular output 20
 Default graphical outputs 20
 Details about graphical outputs 21
 Using option --fold 21
 Graphical outputs per alignment 23

6 Options .. 26
 Covariation statistic options 26
 --E <x> ... 26
 --GT, --MI, --MIr, --Mlg, --CI, --OMES, --RAF, --RAFS, --C2, --C16. 27
 Search options .. 27
 --s ... 27
 --fold ... 27
 --naive .. 27
 --tstart <n> ... 27
 --tend <n> ... 27
 --window <n> .. 27
 --slide <n> .. 27
 --vshuffle ... 27
 --cshuffle ... 27
 Input alignment options 28
-I <x> .. 28
--gapthresh <x> 28
--consensus ... 28
--submsa <n> ... 28
--treefile <f> ... 28

Options for producing a CaCoFold structure 28
--refseq .. 28
--E_neg <x> ... 28
--lastfold .. 28
--show_hoverlap 28
--covmin <n> .. 29
--allow_negatives 29

Options for importing a structure .. 29
--pdb <s> .. 29
--cntmaxD <x> ... 30
--cntmind <n> .. 30
--onlypdb .. 30
--draw_nonWC .. 30

Options for type of pairs tested ... 31
--samplecontacts 31
--samplebp .. 31
--samplewc .. 31

Output options ... 31
--roc .. 31
--outmsa <f> .. 32
--outtree <f> ... 32

Plotting options ... 32
--nofigures .. 32
--r2rall .. 32

Other options ... 32
--seed <n> ... 32

7 Some other topics .. 33
How do I cite R-scape? .. 33
How do I report a bug? 33

8 Acknowledgments ... 34
1 Introduction

R-scape (RNA Significant Covariation Above Phylogenetic Expectation) is a program that given a multiple sequence alignment (MSA) of RNA sequences, finds the pairs of positions that show a pattern of significant covariation. Each covariation score has an E-value associated to it. E-values are determined using a null model of covariation due to phylogeny but independent of any structural constraints.

How to avoid reading this manual

- Follow the quick installation instructions on page 5.
- Go to the tutorial section on page 7, which walks you through some examples of using R-scape on real data.

Everything else, you can read later.

How do I cite R-scape?

2 Installation

Quick installation instructions

Download R-scape.tar.gz from http://eddylab.org/; unpack it, configure, and make:

```bash
> tar xf R-scape.tar.gz
> cd R-scape
> ./configure
> make
> make install
```

The newly compiled binary (R-scape) is in the R-scape/bin directory. You can run it from there, as in this example:

```bash
> bin/R-scape tutorial/updated_Arisong.sto
```

That’s it. You can keep reading if you want to know more about customizing a R-scape installation, or you can skip ahead to the next chapter, the tutorial.

System requirements

Operating system: R-scape is designed to run on POSIX-compatible platforms, including UNIX, Linux and Mac OS/X. The POSIX standard essentially includes all operating systems except Microsoft Windows. We have tested most extensively on Linux and MacOS/X because these are the machines we develop on.

Compiler: The source code is C conforming to POSIX and ANSI C99 standards. It should compile with any ANSI C99 compliant compiler, including the GNU C compiler `gcc`, and the C++ compiler `g++`. We test the code using the `gcc` and `g++` compilers.

The code include several Perl scripts (from the independent program R2R used here). Make sure your PATH environmental variable includes a directory with a Perl executable.

The code also uses GNUPLOT. Make sure your PATH environmental variable includes a directory with a GNU-PLOT executable.

Libraries and other installation requirements: R-scape includes three software libraries:

- the Easel library package (http://bioeasel.org/),
- the HMMER library package (http://hmmer.org/),
- the Infernal library package (http://eddylab.org/infernal/),

and three independent programs:

- FastTree (Price et al., 2010) (for building phylogenetic trees),
- R2R (Weinberg and Breaker, 2011) (for drawing consensus RNA structures),
- RNAVIEW (Yang et al., 2003) (for identifying different types of basepairs in nucleic acid alignments).

All libraries and independent programs will automatically compile during R-scape’s installation process. By default, R-scape does not require any additional libraries to be installed by you, other than standard ANSI C99 libraries that should already be present on a system that can compile C code.

Executables for the three independent programs will appear in the R-scape/bin directory.
Makefile targets

all Builds everything. Same as just saying **make**.

install Installs the binaries (**R-scape**, **FastTree**, **r2r**).

By default, programs are installed in **R-scape**,version/bin. You can customize the location of the binaries by replacing

> ./configure

with

> ./configure --prefix=/the/directory/you/want

The newly compiled binaries are now in the /the/directory/you/want/bin directory.

uninstall Reverses the steps of make install.

clean Removes all files generated by compilation (by **make**). Configuration (files generated by ./configure) is preserved.

distclean Removes all files generated by configuration (by ./configure) and by compilation (by **make**).

Why is the output of ’make’ so clean?

Because we’re hiding what’s really going on with the compilation with a wrapper. If you want to see what the command lines really look like, pass a V=1 option (V for “verbose”) to **make**, as in:

> make V=1

What gets installed by ’make install’, and where?

The top-level configure file has a variable **RSCAPE_HOME** that specifies the directory where **make install** will install things: **RSCAPE_HOME**/bin.

By default **RSCAPE_HOME** is assigned to the current directory **R-scape**.

The best way to change this default is when you use ./configure, and the most important variable to consider changing is --prefix. For example, if you want to install **R-scape** in a directory hierarchy all of its own, you might want to do something like:

> ./configure --prefix=/usr/local/rscape

That would keep **R-scape** out of your system-wide directories like /usr/local/bin, which might be desirable. Of course, if you do it that way, you’d also want to add /usr/local/rscape/bin to your $PATH.
3 Tutorial

Here’s a tutorial walk-through of how to use R-scape. This should suffice to get you started.

Modes of R-scape

For an input alignment, R-scape reports all pairs that have covariation scores with E-values smaller than a target E-value.

R-scape has two different modes of operation which determine how it calculates E-values, for which it needs to know how many possible base pairs were tested (i.e. E-values are multiple-test-corrected). The E-values are calculated in one of two ways:

A one-set statistical test: default

E-values are calculated assuming that all pairs are possible. This is the default behavior of R-scape.

A two-set statistical test: option -s

If the alignment has associated a given structure, option -s performs two independent statistical tests: one for the pairs included in the structure, a different one for all the remaining possible pairs. It also draws the given consensus structure annotated with the significantly covarying base pairs.

The four options to run R-scape

These are the four options to run R-scape.

Evaluate region for conserved structure

All possible pairs are analyzed equally as a one set test. If a consensus structure is provided, that structure is ignored in the covariation test, but it is visualized with the significant covarying pairs highlighted in green.

preferred use:

This option is most appropriate if you’re trying to determine if a conserved structure exists.

Predict new structure

All possible pairs are analyzed equally. A structure is predicted and visualized with the significant covarying pairs highlighted in green.

preferred use:

This option is most appropriate for obtaining a new consensus structure prediction based on covariation analysis.

Evaluate given structure

Requires that your Stockholm file has a proposed consensus structure annotation. Two independent covariation tests are performed, one on the set of proposed basepairs, the other on all other possible pairs. The given structure is visualized with significant covarying pairs highlighted in green.

preferred use:

This option is most appropriate for evaluating how well an independently proposed consensus structure is supported by covariation analysis.

Improve given structure

Requires that your Stockholm file has a proposed consensus structure annotation. Two independent covariation tests are performed, one on the set...
of proposed basepairs, the other on all other possible pairs. A new consensus structure is predicted and visualized with the significant covarying pairs highlighted in green.

preferred use:
This option is most appropriate for using covariation analysis to improve your current consensus structure.

I’ll show examples of running each mode, using examples in the tutorial/ subdirectory of the distribution.

Option –RAF(S) disallowed

The options to use the covariation measures RAF, RAFa, RAFp, RAFS, RAFSp, and RAFSa has been disallowed, unless they are used in combination with option –naive which reports the list of values for all possible pairs without any statistical significance associated to them.

The following disclaimer appears otherwise.

> bin/R-scape --RAF tutorial/updated.Arisong.sto

Files used in the tutorial

The subdirectory /tutorial in the R-scape distribution contains the files used in the tutorial.

The tutorial provides several examples of RNA structural alignments, all in Stockholm format:

- **updated.Arisong.sto** Structural alignment of the ciliate Arisong RNA. This alignment is an updated version of the one published in (Jung et al., 2011).

- **arl4.sto** Structural alignment of the α-proteobacteria ncRNA ar14. This alignment is an updated version of the one published in (del Val et al., 2012).

- **manA.sto** Alignment of the manA RNA motif (Weinberg et al., 2010) provided in the Zasha Weinberg database (ZWD) (Weinberg, 2018).

- **RF00005.sto** Rfam v12.0 (Nawrocki et al., 2015) seed alignment of tRNA.

- **RF00001-noss.sto** Rfam v12.0 seed alignment of 5S rRNA, after removing the consensus secondary structure.
Running R-scape on one alignment file

To run R-scape with default parameters on alignment file tutorial/updated_Arisong.sto use:

> bin/R-scape tutorial/updated_Arisong.sto

The output is a list of the significantly covarying positions under the one-set test

```
# R-scape :: RNA Structural Covariation Above Phylogenetic Expectation
# R-scape 1.4.0 (Oct 2019)
# Copyright (C) 2016 Howard Hughes Medical Institute.
# Freely distributed under the GNU General Public License (GPLv3).
#-------------------------------------------------------------------------------------------------------
# MSA updated_Arisong_1 nseq 95 (95) alen 66 (150) avgid 65.82 (64.97) npairs 20 (20)
# One-set statistical test (all pairs are tested as equivalent)
# Method Target_E-val [cov_min,cov_max] [FP | TP True Found | Sen PPV F]
# GTp 0.05 [-9.78,121.66] [0 | 2 20 2 | 10.00 100.00 18.18]
# left_pos right_pos score E-value substitutions power
#-------------------------------------------------------------------------------------------------------
* 98 106 121.65645 0.00241628 45 0.48
* 122 137 91.44593 0.000357632 57 0.58
```

A star “*” in the first column indicates that the pair is part of the annotated structure in the updated_Arisong.sto file. A blank indicates a pair that is not compatible with the structure. A “∼” indicates an interaction not in the annotated structure but compatible with it (none in this example).

The Arisong RNA in tutorial/updated_Arisong.sto has a proposed secondary structure. Instead of testing all pairs as equivalent, we may want to test the significance of the given structure as a one set of pairs, and independently that of the rest of all possible pairs. In order to do a two-set test use:

> bin/R-scape -s tutorial/updated_Arisong.sto

The output is a list of the significantly covarying positions under the two-set test.

```
# R-scape :: RNA Structural Covariation Above Phylogenetic Expectation
# R-scape 1.4.0 (Oct 2019)
# Copyright (C) 2016 Howard Hughes Medical Institute.
# Freely distributed under the GNU General Public License (GPLv3).
#-------------------------------------------------------------------------------------------------------
# MSA updated_Arisong_1 nseq 95 (95) alen 66 (150) avgid 65.82 (64.97) npairs 20 (20)
# Two-set statistical test (one test for annotated basepairs, another for all other pairs)
# Method Target_E-val [cov_min,cov_max] [FP | TP True Found | Sen PPV F]
# GTp 0.05 [-9.78,121.66] [0 | 11 20 11 | 55.00 100.00 70.97]
# left_pos right_pos score E-value substitutions power
#-------------------------------------------------------------------------------------------------------
* 98 106 121.65645 2.25295e-05 45 0.48
* 122 137 91.44593 0.000357632 57 0.58
* 96 108 88.43400 0.000466924 26 0.28
* 120 139 74.80289 0.00162024 87 0.76
* 119 140 58.72158 0.00678565 90 0.78
* 121 138 58.34837 0.00691674 99 0.82
* 94 110 57.27959 0.00760538 37 0.40
* 124 134 55.67692 0.0086606 20 0.21
* 123 135 54.59630 0.00946822 72 0.68
* 99 105 53.44797 0.0107226 15 0.14
* 97 107 44.91842 0.0405594 58 0.59
```

A star “*” in the first column indicates that the pair is part of the annotated structure in the updated_Arisong.sto file. A blank indicates a pair that is not compatible with the structure. A “∼” indicates an interaction not in the annotated structure but compatible with it (none in this example).

The given structure

```
# The given structure
# SS_cons :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# SS_cons :::::::::::::::::::::::::::::::::::::<<<<<<<___>>>>>>><<<<<<--<<<
# SS_cons <<<<<_______>>>->>>>-->>>>>>::
```

SS_cons <<<<<_______>>>->>>>-->>>>>>::
The scores of the pairs are identical to those in the one-set test. The E-values have changed relative to those of the one-set test.

The –fold option

After performing one of the two statistical tests, this option implements the CaCoFold algorithm:

Builds the best consensus structure that includes the largest possible number of significantly covarying pairs, the maximum-covariation optimal consensus structure. The algorithm identifies pseudoknots and other not nested interactions by running a cascade of nested algorithms until all covarying pairs are taken into account.

Draws the maximum-covariation optimal consensus structure annotated with the significantly covarying base pairs.

It also returns the alignment in Stockholm format annotated with the max-cov optimal consensus structure.

```bash
> bin/R-scape --fold tutorial/updatedArisong.sto
```

The output includes first the same output as default R-scape alone, followed by R-scape’s proposed structure that under the heading “# The predicted CaCoFold structure” as follows,
The structure predicted by R-scape includes all the basepairs reported as covarying, provided that those can be arranged into one single structure (including pseudoknots and other non Watson-Crick interactions). The R-scape folding algorithm cannot deal with residues that covary with more than one other residue, such as is the case for alternative structures or triplets.

Similarly using

```bash
> bin/R-scape -s --fold tutorial/updatedArisong.sto
```

The output includes first the same output as option `-s` of R-scape alone, followed by R-scape’s proposed CaCoFild structure including all the the covarying pairs obtained under the two-set test.

R-scape :: RNA Structural Covariation Above Phylogenetic Expectation
R-scape 1.4.0 (Oct 2019)
Copyright (C) 2016 Howard Hughes Medical Institute.
Freely distributed under the GNU General Public License (GPLv3).

```plaintext
# MSA updated_Arisong_1 nseq 95 (95) alen 66 (150) avgid 65.82 (64.97) nbpairs 20 (20)
# Two-set statistical test (one test for annotated basepairs, another for all other pairs)
#
# Method Target E-val [cov_min,cov_max] [FP | TP True Found | Sen PPV F]
# GTp 0.05 [-9.78,121.66] [0 | 11 20 11 | 55.00 100.00 70.97]
#
# left_pos right_pos score E-value substitutions power
#
* 98 106 121.65645 2.25295e-05 45 0.48
* 122 137 91.44390 0.000357632 57 0.58
* 96 108 88.43400 0.000466924 26 0.28
* 120 139 74.80289 0.00162024 87 0.76
* 119 140 58.72158 0.00678565 90 0.78
* 121 138 58.34837 0.00691674 72 0.68
* 94 110 57.27959 0.00760538 37 0.40
* 124 134 55.67692 0.0086606 20 0.21
* 99 105 53.44797 0.0107226 15 0.14
* 97 107 44.91842 0.0405594 58 0.59
#

# The given structure
# SS_cons:
# SS_cons:
# SS_cons:
#
# Power analysis of given structure
#
# covary left_pos right_pos substitutions power
#
* 94 110 37 0.40
* 95 109 28 0.31
* 96 108 26 0.28
* 97 107 58 0.59
* 98 106 45 0.48
* 99 105 15 0.14
100 104 20 0.21
```
| Method | Target_E-val | [cov_min, cov_max] | [FP | TP True Found | Sen PPV F] |
|--------|--------------|--------------------|-----------------|
| GTp | 0.05 | [-9.78, 121.66] | 0 | 11 17 11 | 64.71 100.00 78.57 |

<table>
<thead>
<tr>
<th># in_fold</th>
<th>in_given</th>
<th>left_pos</th>
<th>right_pos</th>
<th>score</th>
<th>E-value</th>
<th>substitutions</th>
<th>power</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>98</td>
<td>106</td>
<td>121.65645</td>
<td>2.25295e-05</td>
<td>45</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>122</td>
<td>137</td>
<td>91.44593</td>
<td>0.000357632</td>
<td>57</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>96</td>
<td>108</td>
<td>88.43400</td>
<td>0.000466924</td>
<td>26</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>120</td>
<td>139</td>
<td>74.80289</td>
<td>0.00162024</td>
<td>87</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>119</td>
<td>140</td>
<td>58.72158</td>
<td>0.00678665</td>
<td>90</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>121</td>
<td>138</td>
<td>58.34837</td>
<td>0.00691674</td>
<td>99</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>94</td>
<td>110</td>
<td>57.29759</td>
<td>0.00760538</td>
<td>37</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>124</td>
<td>134</td>
<td>55.76792</td>
<td>0.0086606</td>
<td>20</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>123</td>
<td>135</td>
<td>54.59630</td>
<td>0.00946822</td>
<td>72</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>99</td>
<td>105</td>
<td>53.48797</td>
<td>0.0107226</td>
<td>15</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>97</td>
<td>107</td>
<td>44.91842</td>
<td>0.0405594</td>
<td>58</td>
<td>0.59</td>
<td></td>
</tr>
</tbody>
</table>

BPAIRS 17
avg substitutions per BP 42.2
BPAIRS expected to covary 6.9
BPAIRS observed to covary 11

The predicted CaCoFold structure

SS_cons :::---:
SS_cons :::::::::::::::::::::::::::::::::<<<<<<_____>>>>>><<<<<---<<
SS_cons <<_________>>--->>>>>::

Power analysis of CaCoFold structure

<table>
<thead>
<tr>
<th>covary</th>
<th>left_pos</th>
<th>right_pos</th>
<th>substitutions</th>
<th>power</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>94</td>
<td>110</td>
<td>37</td>
<td>0.40</td>
</tr>
<tr>
<td>95</td>
<td>109</td>
<td>28</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>96</td>
<td>108</td>
<td>26</td>
<td>0.28</td>
</tr>
<tr>
<td>*</td>
<td>97</td>
<td>107</td>
<td>58</td>
<td>0.59</td>
</tr>
<tr>
<td>*</td>
<td>98</td>
<td>106</td>
<td>45</td>
<td>0.48</td>
</tr>
<tr>
<td>*</td>
<td>99</td>
<td>105</td>
<td>15</td>
<td>0.14</td>
</tr>
<tr>
<td>111</td>
<td>148</td>
<td>0</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>147</td>
<td>18</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>146</td>
<td>1</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>145</td>
<td>15</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>144</td>
<td>49</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>119</td>
<td>140</td>
<td>90</td>
<td>0.78</td>
</tr>
<tr>
<td>*</td>
<td>120</td>
<td>139</td>
<td>87</td>
<td>0.76</td>
</tr>
<tr>
<td>*</td>
<td>121</td>
<td>138</td>
<td>57</td>
<td>0.58</td>
</tr>
<tr>
<td>*</td>
<td>122</td>
<td>137</td>
<td>72</td>
<td>0.68</td>
</tr>
<tr>
<td>*</td>
<td>123</td>
<td>135</td>
<td>72</td>
<td>0.68</td>
</tr>
<tr>
<td>*</td>
<td>124</td>
<td>134</td>
<td>20</td>
<td>0.21</td>
</tr>
</tbody>
</table>

BPAIRS 17
avg substitutions per BP 4.3
BPAIRS expected to covary 6.9
BPAIRS observed to covary 11

The predicted CaCoFold structure

SS_cons :::---:
SS_cons :::::::::::::::::::::::::::::::::<<<<<<_____>>>>>><<<<<---<<
Example of an RNA with pseudoknots

R-scape implements the CaCoFold folding algorithm capable of predicting pseudoknots and other non nested interactions using a cascade of dynamic programming algorithms. R-scape had adapted the program R2R to automatically include in the display all covarying interactions whether they are nested or not.

Consider the manA RNA motif. Both the proposed structure for manA RNA and the predicted CaCoFold structure have 2 pseudoknots with covariation support:

```plaintext
> bin/R-scape -s --fold tutorial/manA.sto
```

```
# The given structure
# SS_cons <<<<<<<_________________________________>>>>>>:::
# SS_cons_1 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# SS_cons_2 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# SS_cons ________________<<<<<<_________________________________>>>>>>
# SS_cons_1 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# SS_cons_2 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# SS_cons ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,<<<_________>>>,<<<<_________
# SS_cons_1 ::::::::::::::::::::::::::::::::::<<<<____________________
# SS_cons_2 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# SS_cons ____________________>>>>>>,,,<<<<<____________>>>>>,,))))--
# SS_cons_1 _______________________________________>>>>:::::::::::::::::
# SS_cons_2 :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# SS_cons ),,,,<<<<<<<------------<<<<____________________________>>>>
# SS_cons_1 :::::::::::::::::::::::::::::::::::::::::::::::::::
# SS_cons_2 _________________________>>>>:::::::::::::::::::::
# SS_cons ------->>>>>>>,,<<<<<_____________>>>>>
# SS_cons_1 :::::::::::::::::::::::::::::::::::
# SS_cons_2 _________________________>>>>:::::::::::::::::::::
```

```
# Power analysis of given structure
#
# covary left_pos right_pos substitutions power
#----------------------------------------------------------------------
* 1  43  61  0.61
* 2  42  61  0.61
* 3  41  72  0.68
* 4  40 104  0.83
* 5  39 106  0.84
* 6  38 126  0.90
  49  344  15  0.14
* 50  343  16  0.16
* 51  342  26  0.28
* 52  341  77  0.71
* 53  340  26  0.28
* 57  107  38  0.41
* 58  106  16  0.16
* 72  101  71  0.68
* 73  100  38  0.41
* 74   99  60  0.60
* 75   98  34  0.37
* 76   97  31  0.34
* 77   96  27  0.30
* 77    77  27  0.30
*112  241  41  0.44
*113  240  51  0.53
*115  237  61  0.61
*116  236  46  0.49
*117  235  62  0.62
*118  234  49  0.52
*150  162  52  0.54
*151  161  47  0.50
*152  160  36  0.39
*155  223  31  0.34
*156  222  30  0.33
*157  221  28  0.31
*158  220  27  0.30
*164  206  29  0.32
*165  205  54  0.56
```
BPAIRS 63
avg substitutions per BP 57.7
BPAIRS expected to covary 33.2
BPAIRS observed to covary 54

... ...

The predicted CaCoFold structure
SS_cons <<<<<<_______________________________>>>>>>:
SS_cons_1 ::
SS_cons_2 ::

Power analysis of CaCoFold structure
covary left_pos right_pos substitutions power
#---
* 1 43 61 0.61
* 2 42 61 0.61
* 3 41 72 0.68
* 4 40 104 0.83
* 5 39 126 0.84
* 6 38 126 0.90
45 346 82 0.74
49 344 15 0.14
The **SS_cons_1** and **SS_cons_2** lines describe the interactions that are not nested relative to the main **SS_cons** structure.

R-scape uses R2R to produce figures of the consensus structures where pseudoknots are also annotated. R-scape option -s produces the file *tutorial/manA.R2R.sto.*{.pdf,.svg} with the structure annotated in the input alignment. R-scape option –fold produces the file *tutorial/manA.fold.R2R.sto.*{.pdf,.svg} with the structure produced by R-scape. See Figure 1.
Figure 1: Left: tutorial/manA.R2R.sto.\{pdf,svg\}, the consensus secondary structure given in the input alignment, depicted by R-scape, using the program R2R. Right: tutorial/manA.fold.R2R.sto.\{pdf,svg\}, The consensus structure produced by R-scape (option --fold). Base pairs with covariation scores equal or below the target E-value (0.05 as default) are depicted in green.

Single sequence structure prediction

If the alignment includes only one sequence, no statistical test is performed.

```bash
> bin/R-scape --fold tutorial/manA-oneseq.sto
```

reports the best structure given the sequence. No covariation support is possible for any of the basepairs reported from this analysis. Structures produced this way have to taken with great skepticism.

Default parameters

Default parameters are:

Target E-value: default is 0.05. R-scape reports pairs which covariation score has E-value smaller or equal to the target value. The target E-value can be changed with option --E <x>, \(0 \leq x \leq 1\).

Sequence weighting: Sequences are weighted according to the Gerstein/Sonnhammer/Chothia (GSC) algorithm (Gerstein et al., 1994). This algorithm is time consuming. For alignments with more than 1000 sequences, we use the faster position-based weighting algorithm (Henikoff and Henikoff, 1994). Both weighting algorithms are implemented as part of the easel library.

Gaps in columns: Columns with more than 50% gaps are removed. The gap threshold for removing columns can be modified using option --gapthresh <x>, \(0 < x \leq 1\).

Covariation statistic: The default covariation statistic is the average product corrected G-Test (equivalent to option --GTp).

Covariation Class: R-scape uses the 16 component covariation statistic (C16), unless the number of sequences in the alignment is \(\leq 8\) or the length of the alignment is \(\leq 50\), in which
case it uses the two-class covariation statistic (C2). A particular covariation class can be selected using either \texttt{--C16} or \texttt{--C2}.

The threshold for the minimum number of sequences can be changed with option \texttt{--nseqthresh <n>}. The threshold for the minimum alignment length can be changed with option \texttt{--alenthresh <n>}.

Null alignments: In order to estimate E-values, R-scape produces 20 null alignments, unless the product of the number of sequences by the length of the alignment < 10,000 in which case the number of null alignments is 50; or < 1,000 in which case it is 100. The number of null alignments can be controlled with option \texttt{--nshuffle <n>}.

A full list of the R-scape options is found by using

\texttt{> R-scape -h}
4 Inputs

The Stockholm format to describe a consensus structure

The input is a multiple sequence alignment in Stockholm format (https://en.wikipedia.org/wiki/Stockholm_format). The Stockholm format allows to provide a consensus structure for the alignment using the tag `#=GC SS_cons`. R-scape then can analyze the given consensus structure using option `-s`.

The Stockholm format uses symbols `()`, `<>`, `{}`, and `[]` to describe a nested structure. It also allows non-nested structures such as pseudoknots using the symbols Aa or Bb, ..., Zz. See file `tutorial/RF00162.SAM.pk.sto`, where a pseudoknot with 4 basepairs is annotated for the SAM-I riboswitch.

A extended Stockholm format to describe consensus structures with overlapping base pairs

The `#=GC SS_cons` annotation does not allow to display other pairs that overlap with the rest of the structure. These overlapping pairs can be base triplets, other non Watson-Crick interactions or even alternative structures. CaCo-Fold identifies a number of these overlapping pairs with covariation support. In order to annotate these overlapping basepairs, R-scape uses additional annotations in the form `#=GC SS_cons_1`, `#=GC SS_cons_2`,... See for example file `tutorial/RF00162.SAM.CaCoFold.sto`, where in addition to the pseudoknot there are two other overlapping pairs annotated as part of the structure.

You should use this augmented Stockholm format to input a consensus structure with overlapping basepairs. If you run

```
bin/R-scape -s tutorial/RF00162.SAM.CaCoFold.sto
```

you will see that the whole structure is taken into account in the statistical test.
5 Outputs

A Stockholm alignment file can include several different multiple sequence alignments (MSAs). For each alignment file rnafile.sto, R-scape produces the following output files, one for each individual alignment in an input Stockholm file:

- **rnafile.msaname.cov**: Tabular output with the significant pairs, with their score and E-value, estimated number of substitutions and power.
- **rnafile.msaname.sorted.cov**: Tabular output sorted from highest to lowest E-value.
- **rnafile.msaname.power**: Tabular output with the list of basepairs in the proposed RNA structure annotated their power. The file also reports the alignment power, and the expected number of basepairs to covary.

Covariation tabular output

The distribution includes in the directory tutorials/examples of output files. If you run R-scape, the outputs will go into your current working directory (not necessarily tutorials/).

The output file `tutorial/updatedArisong1.cov` looks like this:

```
> more tutorial/updatedArisong1.cov
# Method Target_E-val [cov_min,cov_max] [FP | TP True Found | Sen PPV F]
# GTp 0.05 [-9.78,121.66] [0 | 11 20 11 | 55.00 100.00 70.97]
#
# in_given left_pos right_pos score E-value substitutions power
#-------------------------------------------------------------------------------------------------------
* 94 110 57.27959 0.00760538 37 0.40
* 96 108 88.43400 0.000466924 26 0.28
...
```

The output file is a tabular list of significant pairs sorted by sequence positions:

- **First column** indicates whether the significant pair is part of the given structure (*), or not. If the pair is not in the structure, we distinguish whether the pair is compatible with the given structure (~) or not (blank).

 In addition, if the structure is provided by a PDB file (using the option --pdb), a non Watson-Crick/Watson-Crick base pair is designated by “**”. A contact that is not a basepair is designated by: “c ~” if compatible with all the basepairs, or by “c” otherwise.

- **Second and third columns** are the two positions of the pair, \(i \leq j \) respectively. Positions are relative to the input alignment.

- **Fourth column** is the covariation score.

- **Fifth column** is the E-value. Significant positions have E-values \(<< 1\).

- **Sixth column** is the estimated number of total substitutions in the two columns.

- **Seventh column** is the basepair power or probability that it should covary.

The output file also includes two comment lines per alignment in the file:

- **First comment line** describes properties of the alignment: number of sequence (nseq), alignment length (alen), average percentage identity (avgid), and number of base pairs (nbpairs). Values in parentheses correspond to the alignment as given. Values not in parentheses correspond to the analyzed alignment after the filters (for redundant sequences and gapped columns) have been applied.
Second comment line describes properties of the R-scape search: the covariation method (GTp), the E-value threshold (0.05), the range of scores for all pairs in the alignments (from -9.7 to 89.1), the number of covarying non base pairs (0), the number of covarying base pairs (11), the number of base pairs (20), and the total number of covarying pairs (11). Lastly we provide the sensitivity (SEN=55.00=11/20), positive predictive value (PPV=100.00=11/11), and F-measure (F=70.97 = 2 * SEN * PPV / (SEN+PPV)).

Power tabular output

The output file tutorial/updated_Arisong1.power looks like this:

```
> more tutorial/updated_Arisong1.power

# Power analysis of given structure
# covary left_pos right_pos substitutions power
#----------------------------------------------------------------
* 94 110 37 0.40
 95 109 28 0.31
* 96 108 26 0.28
* 97 107 58 0.59
* 98 106 45 0.48
* 99 105 15 0.14
100 104 20 0.21
```

This file includes the list of all basepairs in the proposed structure given with the input alignment. Each basepair is annotated with the estimated number of substitutions and power.

Default graphical outputs

By default, the following files are also produced

- `rnafile_msaname.R2R.sto` Stockholm file annotated by a modified version of the R2R program. This file includes the information necessary to draw the consensus structure, and to annotate the significantly covarying base pairs.

- `rnafile_msaname.surv` A two column file with the survival functions (surv) for the covariation scores.

- `rnafile_msaname.surv.ps` Plot of the score’s survival function \(P(X > \text{score}) \). Drawing this file requires that program gnuplot is installed somewhere in the \$\{PATH\}, or that the environmental variable GNUPLOT pointing to a gnuplot executable is defined.

- `rnafile_msaname.dplot.{ps,svg}` Dot plot of the consensus secondary structure annotated according to covariation. Drawing of this file requires that program gnuplot is installed somewhere in the \$\{PATH\}, or that the environmental variable GNUPLOT pointing to a gnuplot executable is defined.
For each alignment, `msaname` is given by `<ACC>_<ID>`, the combination of the accession `#GF AC <ACC>` and name `#GF ID <ID>` in the Stockholm-format markups (or one of two if the other in not defined). If none of those fields are defined, `msaname` is a number describing the order in the file of the given alignment.

Details about graphical outputs

Two files are produced per alignment in the input file:

File `tutorial/updated_Arisong.1.R2R.sto` is a Stockholm formatted alignment that includes the input alignment annotated with the consensus structure. This Stockholm file also includes the additional annotation required to use the drawing program R2R.

It is possible that the resulting drawing will show parts of the secondary structure occluded from each other (especially for long RNAs). Using this file, one can customize a different drawing of the structure using the R2R documentation, provided in `lib/R2R/R2R-manual.pdf`.

File `tutorial/updated_Arisong.1.surv` looks like this:

```plaintext
> more tutorial/updated_Arisong.surv
121.795428 0.05
95.862635 0.1
89.113004 0.15
...
63.890698 0.000485437
58.917286 0.000970874
47.904730 0.00145631
...
81.652885 2.40385e-06
77.745204 4.80769e-06
77.034717 7.21154e-06
...
256.788050 2.64342e-17
256.432807 2.7899e-17
256.077563 2.94449e-17
...
```

The first column is a covariation score (x). The second column is the survival function $P(X > x)$, that is the frequency of pairs having score larger than x. The file includes four survival functions separated by a “&” line. The three survival functions correspond to:

- **First functions**: the given alignment, proposed base pairs. (This section is empty if no secondary structure is proposed.)
- **Second functions**: the given alignment, not proposed pairs.
- **Third function**: the aggregation of all null alignments, all possible pairs.
- **Fourth function**: the expected null survival function according to the tail Gamma fit.

Using option --fold

If the option `--fold` is used, R-scape produces the following additional files describing the maximal-covariation optimal secondary structure:

- `rnafile_msaname.fold.sto` The original alignment with the R-scape structural annotation
- `rnafile_msaname.fold.R2R.sto` File used by R2R to display the R-scape structure
These files are formatted identically to those describing the given consensus structure.
Graphical outputs per alignment

Three plots are produced per alignment in the input file:

updated_Arisong_1

Figure 2: tutorial/updated_Arisong_1.R2R.sto.{pdf,svg}: annotated consensus secondary structure. Base pairs with covariation scores equal or below the target E-value (0.05 as default) are depicted in green. By default only positions in the alignment with more than 50% occupancy are depicted (unless they form a base pair). Option --r2rall forces the depiction of all positions in the alignment.
Figure 3: tutorial/updated_Arisong.1.surv.(ps,svg): covariation scores survival function $P(X > x)$. The survival function of scores for all pairs in the given alignment is depicted in blue. The survival function for the null alignments is depicted in black. A black line indicates to fit to a truncated Gamma distribution of the tail of the null distribution. In red, we plot the survival function of scores for the pairs in the given alignment excluding those proposed as base pairs. For a particular pair, as an example the highest scoring one from the distribution of proposed pairs (blue), we obtain its E-value by drawing a vertical (gray) line from the point to the null distribution (black). The corresponding value in the blue scale gives us the E-value for that pair (in this example, $3.7 \cdot 10^{-7}$).
Figure 4: tutorial/updated_Arisong.1.dplot. (ps, svg): dotplot. Dot size is proportional to the covariation score. In blue we depict the consensus base pairs; in green, the consensus base pairs that show significant covariation; in orange (none shown in this plot), we depict other pairs that have significant covariation, are not part of the consensus secondary structure but are compatible with it; in black we depict other significant pairs. Position are relative to the original input alignment (before any gapped column is removed).
6 Options

The whole list of options can be found using

> R-scape -h

Some important options are:

Covariation statistic options

-E <x>

Target E-value is \(x \geq 0 \).

We favor the G-test covariation statistic, but a total of eight covariation statistics are currently implemented in R-scape. For each covariation statistic (GT, for instance), R-scape can also calculate its average product correction (GTP) and its average sum corrections (GTA). For each option above, appending "p" or "a" chooses one of the corrections. For example, --GT does the G-test statistic, --GTP does the APC-corrected G-test statistic, --GTA does the ASC-corrected G-test statistic.

The R-scape default is --GTP.

Details of the definition and provenance of the different covariation statistics can be found in the R-scape manuscript: Rivas, E. & Eddy S. E., “A statistical test for conserved RNA structure shows lack of evidence for structure in lncR-NAs”.

In a nutshell, given two alignment columns \(i,j \),

\[
\text{G-test:}(\text{Woolf, 1957}) \quad \text{GT}(i,j) = 2 \sum_{a,b} \log \frac{\text{Obs}_{ab}^{ij}}{\text{Exp}_{ab}^{ij}},
\]

\[
\text{Pearson’s chi-square:} \quad \text{CHI}(i,j) = \sum_{a,b} \frac{(\text{Obs}_{ab}^{ij} - \text{Exp}_{ab}^{ij})^2}{\text{Exp}_{ab}^{ij}},
\]

\[
\text{Mutual information:}(\text{Shannon, 1948; Gutell et al., 1994}) \quad \text{MI}(i,j) = \sum_{a,b} \text{P}_{ab}^{ij} \log \frac{\text{P}_{ab}^{ij}}{\text{P}_a \text{P}_b},
\]

\[
\text{MI normalized:}(\text{Martin et al., 2005}) \quad \text{MIr}(i,j) = \text{MI}(i,j) - \sum_{a,b} \text{P}_{ab}^{ij} \log \text{P}_{ab}^{ij},
\]

\[
\text{MI with gap penalty:}(\text{Lindgreen et al., 2006}) \quad \text{Mig}(i,j) = \text{MI}(i,j) - \frac{N_G}{N},
\]

\[
\text{Obs-Minus-Exp-Squared:}(\text{Fodor and Aldrich, 2004}) \quad \text{OMES}(i,j) = \sum_{a,b} \frac{(\text{Obs}_{ab}^{ij} - \text{Exp}_{ab}^{ij})^2}{N_{ij}},
\]

\[
\text{RNAalifold (RAF):}(\text{Hofacker et al., 2002}) \quad \text{RAF}(i,j) = B_{i,j},
\]

\[
\text{RNAalifold Stacking (RAFS):}(\text{Lindgreen et al., 2006}) \quad \text{RAFS}(i,j) = \frac{1}{4} (B_{i-1,j+1} + 2 B_{i,j} + B_{i+1,j-1}).
\]

where \(a,b \) are (non-gap) residues; \(N \) is the total number of aligned sequences; \(\text{Obs}_{ab}^{ij} \) is the observed count of \(a : b \) pairs in columns \(i,j \) (only counting when both \(a,b \) are residues); \(N_{ij} \) is the total number of residue pairs in columns \(i,j \) (only counting when both \(a,b \) are residues); \(P_{ab}^{ij} \) is the observed frequency of pair \(a : b \) in columns \(i,j \) (\(P_{ab}^{ij} = \frac{\text{Obs}_{ab}^{ij}}{N_{ij}} \)); \(\text{Exp}_{ab}^{ij} = N_{ij} p_a^i p_b^j \) is the expected frequency of pair \(a : b \) assuming \(i,j \) are independent, where \(p_a^i \) are the marginal frequencies of \(a \) residues in column \(i \) (averaged to all other positions) (\(p_a^i = \frac{1}{L-1} \sum_{j \neq i} \sum_b \text{Obs}_{ab}^{ij} \); \(N_{ij}^G = N - N_{ij} \) is the number of pairs involving at least one gap symbol; the definition of \(B_{i,j} \) used in the RAF and RAFOF statistics is involved, a concise definition can be found elsewhere (Lindgreen et al., 2006).

The background corrections (Dunn et al., 2007) for a given covariation statistic above \(\text{COV}(i,j) \) are,

\[
\text{Average product correction} \quad \text{COV}_p(i,j) = \text{COV}(i,j) - \frac{\text{COV}(i) \text{COV}(j)}{\text{COV}}.
\]

\[
\text{Average sum correction} \quad \text{COV}_a(i,j) = \text{COV}(i,j) - (\text{COV}(i) + \text{COV}(j) - \text{COV}).
\]
For all the covariation statistics (except RAF and RAFT), one can do a 16-component (C16) or a two-component (C2) calculation, depending on whether it uses the 16 possible pair combinations, or those are group in two classes depending on whether they form a Watson-Crick pair (6 cases, including U:G and G:U), or whether they do not (10 cases).

R-scape’s default is the 16 component covariation statistic, unless the number of sequences in the alignment is \(\leq 8 \) or the length of the alignment is \(\leq 50 \), in which case it uses the two-class covariation statistic.

Search options

-s
The “two-set test” option. This option requires that a structure is provided with the alignment. If option -s is used, R-scape performs two independent test, one for the given structure, another for all other possible pairs. The default is a “one-set test” in which all possible pairs in the alignment are tested equivalently.

--fold
A CaCoFold structure is computed that includes all significant base pairs. All files related to this CaCoFold structure include the suffix .fold.

When option --fold is used, a file with the original alignment annotated with the R-scape structure in Stockholm format is produced. This alignment has the suffix .fold.sto.

--naive
Reports the laundry list of all covariation scores, without any statistical significance (E-value) associated to them. No null alignments are created.

--tstart <n>
Analyze starting from position \(n \geq 1 \) in the alignment.

--tend <n>
Analyze ending at position \(n \leq L \) in the alignment.

--window <n>
R-scape can be run in a window scanning version for long alignments. The window size is \(n > 0 \).

--slide <n>
In scanning mode, this options sets the number of positions to move from window to window, \(n > 0 \).

--vshuffle
Vertical shuffle, a developers tool. Before performing any analysis, it shuffles all residues in each alignment column independently.

--cshuffle
Column shuffle, a developers tool. Before performing any analysis, it shuffles all columns in the alignment.
Input alignment options

-I <x>
Only sequences with less than $0 < x \leq 1$ pairwise similarity are considered in the analysis. Pairwise % identity is defined as the ratio of identical positions divided by the minimum length of the two sequences. If this option is not used all (weighted) sequences are used in the analysis.

--gapthresh <x>
Only columns with less than $0 < x \leq 1$ fraction of gaps are considered in the analysis.

--consensus
If the alignment has a GC “seq_cons” field, only consensus positions will be analyzed.

--submsa <n>
Analyzes a random subset of the input alignment.

--treefile <f>
A phylogenetic tree in Newick format can be given (by default a tree is created from the alignment using the program FastTree (Price et al., 2010)). R-scape checks that the number of taxa and the names of the taxa matches for all alignments analyzed.

Options for producing a CaCoFold structure

When using the option --fold, R-scape engages the CaCoFold algorithm to produce a predicted structure. The CaCoFold algorithm incorporates all positive (significantly covarying) basepairs, and prevents any negative pair (pairs that have power of covariation but not covariation) from happening. The CaCoFold algorithm uses a recursive cascade of constrained foldings.
Several additional options can be used in combination with --fold.

--refseq
By default the CaCoFold algorithm folds a profile sequence built from the alignment. Using this option, the sequence to fold is a consensus reference sequence.

--E_neg <x>
Pairs with E-value larger than the E-value cutoff but smaller than $\frac{1}{x_0}$ will not be called negatives regardless of their covariation power. Default for E_neg is 1.0.

--lastfold
This option forces one last alternative fold (using grammar G6X) after all covarying basepairs have already been integrated into the structure. By default this last fold is not performed. In the absence of any covarying basepair, one fold is performed using grammar RBG.

--show_hoverlap
This option leaves the alternative helices unmodified. By default, alternative structures are trimmed down to show no overlap with helices from the previous layers.
--covmin <n>
Minimum distance between position to report significant covariations. Default is 1, which means that significant
covariations between contiguous positions are reported.

--allow_negatives
This option (just for developers) allows all basepairs to form regardless of their power.

Options for importing a structure

R-scape does not require to input a structure (either a RNA structure or a protein contact map). By default R-scape
analyzes all possible pairs in the alignment.

There are two ways to provide a contact map (or structure):

- By providing the alignment in Stockholm format with a “ss_cons” field including the consensus structure for the
 alignment. (For RNA alignments only.)
- By analyzing a 3D structure provided in a PDB file. (For either RNA or peptide alignments.)

These two methods can be combined together. For a nucleotide alignment, if both a consensus structure is present
in the alignment, and a PDB file is provided (using option --pdb), the consensus structure will be extended by the
information provided by the pdbfile. To ignore the consensus structure use option --onlypdb.

From the PDB file we obtain three types of structural pairs:

- **Contacts**: defined as those two residues at a close spatial distance (specified by the user with option --cntmaxD).
- **Basepair**: RNA basepairs.
 RNA basepairs are calculated using the program rnaview (Yang et al., 2003).
 These RNA basepairs can be further classified in two types:
 - **Watson-Crick basepairs**: the canonical RNA basepairs. mostly A:U, G:C, or G:U pairs. (H-bond inter-
 actions between two W-C faces in cis).
 - **Other basepairs**: the non-canonical RNA basepairs (all other types of H-bond interactions, 12 different
 types).

Contacts and RNA basepairs are extracted as follows:

- The spatial distance between any two residues is calculated as the minimal Euclidean distance between any two
 atoms (excluding H atoms). Any two pairs at a distance not larger than a maximum value (contmaxD) are
 called a “contact”.
- RNA basepairs are obtained using the program rnaview (Yang et al., 2003)
 (http://ndbserver.rutgers.edu/ndbmodule/services/download/rnaview.html).
 The RNA basepair annotation takes precedent over the annotation as “contact”.

The options that control the input of a structure or contact map are:

--pdb <s>
Reads a pdbfile associated to the alignment, and extracts the contacts from it.

A “.cmap” file is produced reporting the structure obtained from the PDB file.

Option --pdb is incompatible with --fold.
Maximum distance (in Angstroms) allowed between two residues to define a “contact” is $\langle x \rangle$.

Minimum distance (in residue positions) in the backbone between two residues required to define a “contact” is $\langle n \rangle$.

Reads the structure from the pdbfile and ignores the alignment consensus structure (if provided).

Adds the non-canonical basepairs into the structure graphical output. For clarity, the default is to draw only the Watson-Crick bases. This option affects only the drawing of the structure. All basepairs (canonical or not) are used as part of the structure to perform the two-set statistical test.

Example of reading a structure from a PDB file for the FMN riboswitch:

```
> bin/R-scape --cntmaxD 4 --cntmind 3 --pdb tutorial/3f2q.pdb -s --onlypdb tutorial/RF00050.sto
```

This command line extracts contacts from the pdb file that are at a Euclidean distance $\leq 4\AA$ in the PDB structure, and such that they are at least 3 residues apart in the backbone.

The output is:

```
# R-scape :: RNA Structural Covariation Above Phylogenetic Expectation
# R-scape 0.8.1 (Jul 2018)
# Copyright (C) 2016 Howard Hughes Medical Institute.
# Freely distributed under the GNU General Public License (GPLv3).
# Two-set statistical test (one test for annotated basepairs, another for all other pairs)
# Structure obtained from the pdbfile
# i j in alignment | i j in pdbsequence | basepair type
# 3 218 | 1 112 | WWc
# 4 216 | 2 110 | CONTACT
# 4 217 | 2 111 | WWc
# 4 218 | 2 112 | CONTACT
# 5 216 | 3 110 | WWc
# 5 217 | 3 111 | CONTACT
# 6 215 | 4 109 | WWc
# 6 216 | 4 110 | CONTACT
#
# contacts 169 (49 bpairs 35 wc bpairs)
# maxD 4.00
# mind 3
# distance MIN
# L 139
# alen 221
# pdblen 112
```

30
All coordinates are relative to the input alignment. The annotation of all types of RNA basepairs (WWc, WWt, WHc,...) is produced by the program rnaview (Yang et al., 2003).

Options for type of pairs tested

When performing the two-class statistical test (option \(-s\)) using a pdbfile to read the structure, there are different options as to which types of basepairs are used to define the sample size for the basepairs test.

- **--samplecontacts**
 The basepair statistical test includes all the contacts identified in a PDB or/and as a RNA secondary structure included with a input alignment in Stockholm format. This is the default option for amino acid alignments if a PDB file is provided.

- **--samplebp**
 For RNA alignments with only. The basepair statistical test includes basepairs of all 12 possible types. This is the default option for RNA/DNA alignments if a PDB file is provided.

- **--samplewc**
 For RNA alignments only. The basepair statistical test includes only the canonical (Watson-Crick/Watson-Crick type) basepairs (A:U, G:C, G:U). This is the default option for RNA/DNA alignments if a consensus secondary structure is provided.

Output options

- **--roc**
 Produces a tabular output that provides statistics for each score value.

File `tutorial/updated_Arisong.roc` looks like:

```
# MSA nseq 95 alen 65 avgid 66.352419 nbpairs 20 (20)
# Method: GTp
# cov_score FP TP True Negatives Sen PPV F E-value
121.79543 0 2 2 20 2060 10.00 100.00 18.18 4.07104e-05
121.44018 0 2 2 20 2060 10.00 100.00 18.18 4.29443e-05
```
This file produces a tabular output for each alignment as a function of the covariation score, for plotting ROC curves. The values in the file are described by the comment line. Notice that the number of Trues (column 5) and Negatives (column 6) are fixed for a given secondary structure and do not change.

`--outmsa <f>`

The actual alignment analyzed can be saved in Stockholm format to file `<f>`.

`--outtree <f>`

The phylogenetic tree (created using the program FastTree) can be saved in Newick format to file `<f>`.

Plotting options

`--nofigures`

None of the graphical outputs are produced using this option.

`--r2rall`

Forces R2R to draw all positions in the alignment. By default only those that are more than 50% occupied or are base paired are depicted.

Other options

`--seed <n>`

Sets the seed of the random number generator to `<n>`. Use n = 0 for a random seed.
7 Some other topics

How do I cite R-scape?

You should also cite what version of the software you used. We archive all old versions, so anyone should be able to obtain the version you used, when exact reproducibility of an analysis is an issue.

The version number is in the header of most output files. To see it quickly, do something like `R-scape -h` to get a help page, and the header will say:

```
# R-scape :: RNA Structural Covariation Above Phylogenetic Expectation
# R-scape 0.8.1 (July 2018)
# Copyright (C) 2016 Howard Hughes Medical Institute.
# Freely distributed under the GNU General Public License (GPLv3).
```

So (from the second line there) this is from R-scape v0.8.1.

How do I report a bug?

Email us, at elenarivas@fas.harvard.edu.

Before we can see what needs fixing, we almost always need to reproduce a bug on one of our machines. This means we want to have a small, reproducible test case that shows us the failure you’re seeing. So if you’re reporting a bug, please send us:

- A brief description of what went wrong.
- The command line(s) that reproduce the problem.
- Copies of any files we need to run those command lines.
- Information about what kind of hardware you’re on, what operating system, and what compiler and version you used, with what configuration arguments.
8 Acknowledgments

We thank S.E. Roian Egnor for suggesting the name R-scape, and the Centro de Ciencias de Benasque Pedro Pascual in Spain, for their hospitality, over numerous and wonderful summers.

References

